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LIAPUNOV STABILITY AND CONTROLS*

SOLOMON LEFSCHETZ

Let me consider first the elements of Liapunov’s theory which are ac-
tually involved. I presume that you all know his basic stability definitions
and I shall only describe the theorems required.

Let then

() . U(u), U(O) O,

bean n-vector system where U(u) is continuous for all u. Denote
by V(u) a positive definite Liapunov function for all u; V(u) is of class
C for all u and V(0)= 0. As a consequence along the paths of (1),

dV(u(t))/dt (OV/Ou). U for all solutions u(t) of (1).
THEOIEM 1. (Liapunov). If --(z > 0 for all u

asymptotically stable in the large.
TEOREM 2. (Barbain-Krasovski complement). If V(u) -- with
u then every solution u(t) of (1) approaches 0 as --+

These two propositions may be combined as the
L-B-K THEOIEM. If V and --(z are positive definite for all u and V --+

with u [[, then all solutions of (1) approach 0 as --AVXILIARY PnOeERTY3. (Special case of Liapunov’s instability theorem.)
If there exists a Liapunov function V(u) in the whole u space such that both
V and are positive definite then all solutions u(t) are unbounded.
This last property leads directly to Theorem 2. One closes the u-space at

infinity by a point. Thus the space becomes a sphere with the origin as
South pole S and infinity as North pole N. If V behaves as in Theorem 2,
then 1IV W behaves in accordance with Property 3 relative to N and
yields Theorem 2.

After these preliminaries we are ready to discuss controls. A. Lurie has
had the great merit to synthesize into a comparatively simple system
vast collection of controls. His system (1947) improved by Popov (1960) is

Ax b((r),

(2) (),

o’ CX--’y.

* Received by the editors October 7, 1964. Presented t the Symposium on the
Mthemticl Theory of Optimal Control, held t the University of Michigan,
October 5-7, 1964.

f Center for Dynamical Systems, Division of Applied Mthematics, Brown Uni-
versity, Providence, Rhode Island, nd Princeton University, Princeton, New Jersey.
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Here 2 Ax is an n-vector equation in the deviation x from the normal,
which one hopes to snuff out through imbedding in a larger (n -t- 1 )-
vector system control with parameter vectors b, c, scalar , scalar vari-
able (, with a servo-eharacteristic 4(o.). Its admissible class is governed by:

4(o.) is eontinuous; 4(0) 0, o.4(o.) > 0;(o.) 4(o.) do- diverges,

as ]o.I -- - We also have the following general problem.
Problem of Lrie. To find neeessary and sufficient conditions that the

solutions of (2) all -- 0 as -t-, and this regardless of the choice of
admissible 4(o.). This is absolute abiliy.
Now the requirements of design are merely to find fficien conditions

ecear conditions being just a nice mathematieal complement if one
can find them also.

Several observations are now in order:
I. If , 0, the signifiean part of (2) reduces to

(3) Ax- b(c’x),
and ceases to play any role. The system (3) characterizes direct control,

(2) an indirect control. Practically, (2) is the more important scheme;
but formally, each of the two types may be reduced to special case of the
other.
We will concentrate on (2) and so assume , .0.
II. Since , 0 one may replace by o. in (2) and obtain the equivalent

system,

(4) Ax b(o.), c’Ax p(o.), c’b + ".

III. Absolute stability requires that for #o., > 0, the linearized
system

(5) 2 Ax bo., c’Ax po.,

be asymptotically stable for all > 0, and in particular for t > 0 and small.
This leads quite readily to the following two properties:

IV. No characteristic root of A may have positive real part.
V. > 0.
VI. Still playing with (5) one may show that:

(a) Zero is at most a simple characteristic root of A;
(b) i0 is at most a double root of A.
These two cases are the critical cases.

Stability. The whole trouble is due of course to the presence of the very
general nonlinear characteristic (o.). At all events the only theory at our
disposal is that of Liapunov. One must look therefore for a function V(x, o.)
with suitable behavior. The first general proposal (Lurie-Postnikov) was
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a function

(6) V(x, o’) x’Bx -t- (o),
where the first term is a quadratic form. At once

(7) ?(x, ) xrCx T 2d’x +
(8a) A’B - BA -C,

(8b) d Bb- 1/2A’c.
One will assume that A is stable (perhaps merely feebly). It turns out that
the following are necessary and sufficient conditions to satisfy the L-B-K
Theorem for all admissible , and hence sufficient to obtain absolute sta-
bility"

(9a)

(9b)

existence of a matrix C > 0,

p > d’C-ld (p > 0).

These are strong conditions on a whole matrix C.

The theorems of V. M. Popov. This was the situation until 1960, the
date when Popov of Romania came out with two very strong theorems
which we shall now discuss.

Set Az zE A, so that A 0 is the characteristic equation of A.
Note in particular that since A is stable A. 0 for all real ; hence
AT exists for all such .
We will state the two theorems of Popov; both refer to the system (2).
FIRST THEOREM OF POPO. A svcient condition for absolute stability

of the indirect control (2) is the existence of q >= 0 such that

(10) P(q, ) q. + Re/(1 + iq)c’A-(b} >= 0

for all real .
SECOND THEOREM OF POPOV. A necessary condition to have absolute sta-

bility determined by means of a Liapunov function of the form "quadratic
form in x and ( plus fl(a)" and the L-B-K Theorem, is that (10) hold for
some q >= 0 and all real .
Remarls on the first theorem. In the first place this theorem is already

sufficient for the technical applications, all the more so since it only involves
finding a real constant q and not the n(n - 1)/2 terms of a real matrix,
namely C. This is already striking enough. Actually the discovery of q
is quite simple. We have in fact P(q, ) $1() qS2(), where $1 and
0S. are real rational functions. The curve 1 represented parametrically by
y S(o), x wS2(), is of the type known as rational and may be drawn
with little difficulty. The inequality P >= 0 merely asserts this"
(a) if q > 0, the curve F is above the line L’y qx 0;
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(b) if q 0, the curve is above the x-axis;
(e) if q , the curve is to the left of the y-axis.
Whether (a), (b) or (c) holds may be readily verified.

It is also very remarkable that the first Popov theorem has been obtained
without reference to Liapunov’s general theory.
Remarks on the second theorem. The second theorem refers to a Liapunov

function more complicated than the first,

(11) V(x, z) x’Bx + a(a- c’x) + (z).

Actually a priori V should have an additional term in xa. However it is
readily shown that for absolute stability this term must be absent. From
11 there follows

(12) --? x’Cx -4- 2d’xd + p)2 A-- 2a3,d, d Bb 1/2A/ a3’c.

The "e-method" yields at once preliminary results. It demands that under
the substitutions x, z, --. ex, z, e34, V be positive. If a 0 its sign is that
of az for e small and a 0, and so a 0. Similarly >= 0 and
also a A- / > 0. Hence the companion necessary conditions to (11) are

(lla) a >= 0, >= 0, a -4- fl > 0.

This is assumed throughout.
Remarks on the wo theorems. A widely open question is his-Can suf-

ficiency of he firs heorem be replaced by "necessary and sufficien condi-
tion", which migh be srenghened by some simple condition such as (11a) ?
This problem is sill unsolved.

Outline of proof of Popov’s first theorem. We deal directly with system (2).
After very extensive and complicated analytical work, resting above all
upon Fourier transforms, it is shown as a consequence of the inequality
(10) that (t) is bounded as -- + . From this point on, boundedness
of (t) leads to that of x(t) 1[, and more precisely to the proof that the
solution (x(t), (t)) of (2) is stable in the sense of Liapunov. Further
analysis proves then that this solution approaches 0 whatever admissible, that is, absolute stability is achieved. (Details must be abandoned as
they would require far more time than is reasonable.)

Outline of proof of the second theorem. It is convenient in (10) to replace
q by /2a, so that (10) becomes

)c ATd,b} -> O,P(a ,o) -t- Re{(2a--4-i
(13)

c >= 0, >- 0, +fl>0.
This will enable us to consider in a very natural manner he value q .
We will now prove ha if V, -9iven by (11), (12) are positive definite
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for all x, , then (13) holds with the same a, as in (11), (12). This is the
content of he second theorem.
A preliminary step is required. If u’Fu is a real bilinear form and is

positive whenever u 0, we will write F > 0. Then the proof of the follow-
ing is elementary.

Property F 0 for all real u is equivalent to

(14) Re v*F > O for all complex v - O.

We have already seen that V >= 0 implies (lla). Write now-- --2x’B(Ax b) - 2,(- c’x) {c’(Ax b) } > O.

A,bIf we apply (14), observe the relation AA,b b,
and substitute in -I- x -m, , t > 0, 1/t, then after some
simplifications, we obtain

(15) 2a___ + P(a, , o) > O.

Since this must hold for all > 0, (13) follows.
Complementary remark. Suppose that a 0; hence f > 0. Then one

may divide V by so that V becomes the function (6). The relation (15)
yields then the stronger necessary condition

P(0, 1, o) > 0.

Some further recent results. The results of Popov stimulated a return,
notably by Yacubovich and Kalman, to earlier more algebraic procedures,
with strict adherence however to Liapunov’s ideas.

Let the pair (A, b) [(c’, A)] be called completely controllable (denoted
c.c.) [completely observable (denoted c.o.)] whenever the vectors Ahb,
0 <__ h < n, are linearly independent [whenever (A’, c) is c.c.]. If both hold
we say that (A, b, c) is c.c.o (Kalman). If it is not, one may replace (2) by
a system of lower order with (A, b, c) c.c.o. In what follows we accept this
preliminary reduction. We have then an important lemma.
LEMMA OF YACUBOWCH. Let A be stable. Consider the system in the real

matrix B and vector q,

A’B BA -eD qq,
(16)

Bb

where b, k are real vectors, b 9; with e > O, r >= 0 real scalars and D a

symmetric matrix > O. A necessary and sucient condition for the existence

of a solution (B, q) q((16) is that e be small enough and that Kalman’s
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relation,

(17) r -t- 2 Re (/ A-(2b) > O,
hold for every real o.

By taking r , lc 1/2A’c - ac, (17) reduces to P(a, , ).
On the basis of the lemma, I proved the following theorem.
THEOREM. The necessary and sucient conditions to have V and -- of

(10), (11) satisfy the L-B-K Theorem, and hence yield absolute stability, are
P(a, , ) 0 for all real o plus - > O, or else - O, d O, a > O.
A stronger result was obtained by Kalman in replacing < 0 by __< 0,

using a result of LaSalle, plus P >= 0, plus another quite complicated rela-
tion.
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AN EXISTENCE THEOREM IN PROBLEMS OF OPTIMALCONTROL*

LAMBERTO CESARI

1. Introduction. In the present paper we aim at a new existence theorem
for the problem of Pontryagin in the mathematical theory of optimal
control. Further existence theorems for the problems of Pontryagin and
Lagrange will appear elsewhere.

As usual we denote by I[x, u] f0(t, x, u)dt the "cost," that is, the

functional which has to be minimized, by u u(t), t <__ <= t, the "con-
trol function" with values u(t) (u,..., u,) in a given compact
subset U of the m-dimensional Euclidean space E, and by x x(t)

(x, ..., x) a corresponding trajectory in the Euclidean space E,
satisfying n given differential equations

dx
dt

f(t, x(t), u(t) ), i 1, n,

and taking given initial and final values (see 2 for details and extensions).
We shall denote by f f(t, x, u) the n-vector f (f, f.), and by
the (n -4- 1)-vector (fo, f, f). The subset U of E above may
be fixed or, more generally, variable with and x, and we write U(t, x).
A number of important existence theorems have been proved so far. We

mention here the existence theorems for the problem of "minimum time"
(f0 1) whenf has the formf Ax 4- Bu, A, B constant matrices, and U
has the form [i u[ =< 1, j 1, ..-, m] by R. V. Gamkrelidze [3], suc-
cessively extended by Pontryagin [10] to the case where U is a convex finite
polyhedron in E. We mention the results of L. Markus and E. B. Lee [8]
and the more general statements of A. F. Filippov [2] and E. Roxin [11].
L. Markus and E. B. Lee, and E. Roxin showed also how the lack of con-
vexity conditions may easily lead to examples of Pontryagin’s problem
with no optimal solution. The most significant condition which is requested
in Filippov’s results is that the set Q(t, x) ](t, x, U(t, x)) be convex,
that is, for every (t, x), f transforms U(t, x) in a convex subset of the
(n A- 1)-dimensional (x0x .--x=)-Euclidean space E+.
In the calculus of variations for free problems (that is, when no differ-

* Received by the editors September 28, 1964, and in final revised form March 15,
1965. Presented in discussion at the Symposium on the Mathematical Theory of
Optimal Control, held at the University of Michigan, October 5-7, 1964.

Department of Mathematics, University of Michigan, Ann Arbor, Michigan.
This research was partially supported by the National Science Foundation under
Grant G-57 at the University of Michigan.
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ential equation is involved) the condition that f0 be convex with respect
to u is relevant for the existence of a minimizing solution, since then the
cost is a lower semicontinuous functional. We have been exploring the
possibility of using this condition in the general Pontryagin problem. Of
course, this condition alone does not assure existence when a differential
system is involved.
In the present paper we give an existence theorem by combining two

conditions" (1) for each (t, x) the scalar f0 is a convex function
of u in the compact set U(t, x); (2) for each (t, x), Q(t, x)
--f(t, x, U(t, x)) is a convex subset of the n-dimensional Euclidean
(X xn)-space En (while O(t, x) may not be convex in the (n + 1)-
dimensional (x0x x)-space E+); (3) the "curvature" of f is small
with respect to the "degree of convexity" of f0 (see 2 for details).
The theorem of existence stated here (4) combines Tonelli’s direct

method of the calculus of variations based on lower semicontinuity and
convexity, with the typical reasoning of Filippov. The complete proofs are
given in [lb]. Under conditions (1) and (2) new phenomena occur which
are studied. Examples are shown to the effect that conditions (1) and (2)
alone do not assure existence (5).

Nevertheless, there is a situation where no convexity of f0 or f is needed
at all, as L. Neustadt [9] pointed out in a recent paper, namely, whenf and f0
are linear in x, that is, when f a(t)x - (u, t), i O, 1, n, and
U is compact.

2. Notations. Let denote the independent variable, E0 [t <_- -<_ T]
let x (x, x) be a vector representing the state of the system,
x E. For each (t,x) E0 X E let U(t, x) be a set of vectorsu

(u, u), or U(t, x) E. The set U(t, x) may be fixed, or variable
with and x for (t, x) E0 X E. The variable vector u U(t, x) rep-
resents the position of the regulator, and U U(t, x) is said to be the
control space. Let x0 (x, x) be a fixed point of E,. Letf(t, x, u),
i 0, 1, ,n, be functions of t, x, udefined for (t, x) E0 X E.,
u U(t,x), and let f and)V be the two vectors f (f, ,f),
] (fo ,f, "’", f). When needed, we shall use the auxiliary variable
x0 E, and then 2 will denote the vector 2 (Xo, x, ..., x.),
2 E+I E1 X En.

Let K Ix(t), u(t), t =< -<_ t] be the set of all admissible strategies, or
control functions u(t), and corresponding trajectories x(t), that is, the set of
all pairs of vector functions u(t) (Ul, u,), x(t) (x
tx _-< -<_ t, with tl =< t2 _-< T, such that (1) u(t) is measurable in [tl,/2];
(2) the differential system

(1)
dt

-fi(t,x,u(t)), i-- 1, ,n, tl <-_ <-_ t2,
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x f(t, x, u(t)), t <= <-_ t,

dmits of the solution x(t) (Xl, x,), whose components x(t) are
absolutely continuous functions in It1, tz], satisfy (1) almost everywhere,
arid have initial values x(tl) xl, i 1,...,n, orx(tl) xx0

(x,1, x,); (3) u(t) U(t, x(t)) for every t =< =<
The vector function x(t), t =< =< tz, is said to be a trajectory relative to

the admissible control function u(t) with initial point x0 and initial time
t (which are assumed to be fixed), and final point x(tz) x0

(xaz, x,) and final time t both for the moment undetermined.
The points x20 which are final points of some trajectory x(t) correspond-

ing to some admissible control function u(t) re said to be accessible from
Xl0 (that is, starting from x0 at time ta). Finally, we shall denote by M
the set of all points (t, x, u) with Eo [t T], x E, u U(t, x).

If b (b, ,b,), u (Ul, ,u,) are any two vectors of the
same dimension, we denote by b.u the usual inner product bu + +
b,u,,. Therefore, each linear function in u can be written in the form z(u)

r + b.u, u E,, where r is scalar, b vector, (r, b constants), and
we have also, for every u0 E,, u0 (u0, u0,),

z(u) r + b.u Z(Uo) + b(u Uo).

We shall denote by ]x (x’x) the usual Euclidean norm of a vector x.

3. Hypotheses. (C) Hypotheses of continuity and compactness. (C) The
functions f are continuous on M; (C_) for every E0 and x E, the
set U(t, x) is compact; (Ca) the set U(t, x), (t, x) E0 X E is an upper
semicontinuous function of (t, x), that is, we assume that, given > 0,
to E0, x0 E, there exists a ti ti(e, to, x0) > 0 such that U(t, x)
[U(t0, x0)] for every (t, x) E0 X E with It t01 < 6, Ix x0 < ,
where U denotes the closed neighborhood of U of radius e in E., (C4)
there exists a constant C > 0 such that xzf A- k- x,f, <- C(I x 4- 1)
for everyt E0,x E.,u U(t,x).
The condition (C4) assures that the trajectories x(t), t <= <-_ t., with

x(ti) Xl0, ti t2 =--< T, (tl x0 fixed) belong to some bounded closed set D
of the space E. (see [2]). Indeed, if z(t) Ix(t) ] -4- 1, or z(t) xi -t-

A- x. + 1, then, by (1) and (C), z’ 2(x.f) __< 2Cz, hence z(t) <=
z(0) exp [2C(t t)] =< z(0) exp [2C(T t)]. We can take for D a solid
closed ball in E
We shall denote by Mr the set of all (t, x, u) with E0 [t, T],

x D, u U(t, x); hence Mr M. The hypotheses (C) and (Ca) to-
gether assure that the set Mr is compact (see [2]; for another proof, [1hi).
The condition (C) then assures that, for each (t, x) E0 X D, the set

Q(t, x) f(t, x, U(t, x) E, is compact, and Q(t, x) describes a compact
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set 1, ts (t, x) describes Eo X D, sy i) f(Mr). The functions
f(t, x, u), i 1, 2, n, are bounded in Mr, sy If(t, x, u) <= N for
(t, x, u) Mr. As consequence, the components x(t), i 1, n, of
the trajectories x(t) re uniformly Lipschitzin with constant N, nd re
Mso bounded since they lie in D. We shll tke N in such wy that also
for f0 we hve ]0(t, x, u) -<- N for (t, x, u) Mr.

Finally, the components u.(t), j 1, n, of the strategies u(t) K,
or control functions, are also uniformly bounded since (t, x(t), u(t) E Mr
and Mr is a bounded subset of the (m + n + 1)-dimensional (txu)-space
Em+n+l. We shall take N so that

(2)
If,(t, x(t), u(t))[ <_ N, i O, a, n,

u(l)[ <-_ N, j 1, m,

for every t _-< __< t =< T, and u(t) K.
For every (t, x) E0 X D the set U(t, x) is compact, but not necessarily

convex. We shall denote by U*(t, x) the convex, closed and therefore com.-
pact hull of U(t, x). We shall need the following further hypotheses.

(C’) The functions f(t, x, u), i 1, n, are defined and continuous
on the compact set MT* of all (t, x, u) with 1’5% It1 T], x D,
u U*(t, x).

If it huppens that for ech (t, x) E0 X D the set U(t, x) is convex,
then condition (C) reduces to the condition (C).

(I) Hypothesis of convexity. For every (t, x) Eo X D the set Q(t, x)
f(t, x, U(t, x) is convex.
Under this hypothesis and (C) then Q(t, x) is convex and compact. We

shall now mesure the degree of "convexity" of the scalar function fo and
the "curvature" of the n-vector f (f, f,). This we do by means of
the following hypotheses (or definition of convexity).

(a) Hypothesis of convexity of fo. There is a nonnegtive bounded and
Borel measurable function C C(t, x, u), (t, x, u) Mr*, with the follow-
ing property" for each e > 0 and (to, xo, uo) Mr* there are

5(to, x0, uo, e) > 0 and a linear function z(u) r b.u (also depending
on to, Xo, u0, e) such thut, for every (t, x) E0 X D at distance
from (to, x0) we hve fo(t, x, u) >= z(u) + C lu uo for cch
u U*(t, x);fo(t, x, u) <= z(u) - for each u U*(t, x) with u

Condition (a) is certainly satisfied if, for each (t, x), the function f0 is of
class C in u (u, u,,), if the second prtil derivutives f0 ure
continuous in Mr*, and if the quadratic form

Ofo
fo t, x, u) f ou

h, k 1, ,m; t, , real,
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is positive semidefinite (positive deft,rite if we want C > 0). Condition (a)
as given above is only a generalized form of this familiar condition, which
does not require second order partial derivatives. This generalized form of
stating convexity is often used in the calculus of variations.
() Hypotheses of boundedness of the curvature of f. There exists a non-

negative, bounded, Borel measurable function D D(t, x, u), (t, x, u)
ff Mr*, with the following property" for each > 0, (to, x0) ff E0 X D,
Uo U*(to, xo), there are a (t0, x0, u0) > 0 and a linear function
Z(u) R -- Bu (R an n-vector, B an n X m matrix, , R, B depending on
to, xo, Uo, e), such that for each (t, x) Eo X D at a distance _-< t from
(t0 xo) we have If(t, x, u) Z(u) --< e -t- D u u0 for each
u U*(t, x).

Condition () is certainly satisfied if, for each (t, x) Eo X D, f(t, x, u)
is of class C in u (ul, urn) with second order partial derivatives
continuous in Mr*, and

L,(t, x, u)$ <= 2D(t, x, )(12 + + m2),
i=l h,k

O’f/OuOu, and is taken for all h, k m.wheref, 1, ...,
Finally, we require certain Lipschitz-type requirements on both the

scalar function f0 and the vector function f (fl, f).
(’y) Lipschitz-type conditions for fo and f. There are two functions

A(t, x, u), L(t, x, u), (t, x, u) Mr*, both nonnegative and Borel measur-
able, with the following properties"

(Y) Ifo(t, x, u) fo(t, x, Uo)l -<- n(t, x, Uo)l u uo

for each (t, x) E0 X D and any two points u, u0 U* (t, x)
(:) if, for every (t, x) E0 X D, for every n-vector Zo f(t, x, u0),
u0 U*(t, x), and for every other n-vector z f(t, x, U*(t, x) we take
z f(t, x, u), u U*(t, x) with u u01 minimum, then we have

=< x, [z z0 [.
Condition (,) obviously does not require the monotoneity of f in the

vector u, a condition which would be impossible to verify if, for instance,
n < m. Nevertheless, if n __> m, then condition (/:) is certainly verified if f
is monotone in u and if

u u0 --< A(t, x, u) If(t, x, u) f(t, x, Uo)l
for every (t, x) E0 X D and any two u, Uo U*(t, x). We say that
f(t, x, u) is monotone in u if u, Uo U*(t, x), u no, implies f(t, x, u)

f(t,x, uo).

4. txistence theorem for Pontryagin’s problem.
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TEORE. Under hypotheses C C1’ I a (’ let us assume
that

(2) A(/, x, u)L(t, x, u)D(t, x, u) <-_ C(t, x, u), (t, x, u) MT.,

where the equality sign holds at most at points (t, x, u) Mr* whose coordi-
nates lie in a subset of measure zero of Eo Let us assune that the point x,o is
accessible within the time T starting at the point Xo at the time t Then there
is an optimal solulion no(t), t <__ <= t, uo(t) - K, for Pontryagin’s prob-

t2
I fo(t, x(t), u(t)) dt minimum, u (u, ..., u,),

x’(t) -f(t,x(t),u(t)),t <= t,,f (f, ,A),x (Xl .Xn),

(x(t), u(t)) - K,

x( t) Xo x( ta) xo t <= t <= T, t Xo xo fixed.
We refer for the proof to [lb].
Remark 1. I the existence theorem above, hypothesis (2) simply stttes

that the "curwture" of f is small with respect to the "convexity" of f0.
The comparison factor LA depends "in sense" on the "linear" parts
of f nd f0.
Remark 2. In the existence theorem above, the hypothesis that xo is

accessible can be replaced by the hypothesis that x0 is a point of accumula-
tion of ccessible points. The set of the points of accumulation is closed.
This remark is essentially Roxin’s (see [lb] for the proof).
Remark 3. In the existence theorem above, we can replace the fixed p()it-

target x0 by a moving set-target B(t) as i. the paper by L. Markus ad
E. B. Lee [8]. We have only to require that B(t) is a continuous set functio.
Precisely, we assume that B(t), t’ <= <= T, is a variable subset of E such
that () for each the set B(t) is closed, t =< =< 7’; (b) B(t) wries with
continuity, that is, we assume that, given > 0, there is ti > 0 such that t,

[t, T], It 1 --< ti imply B(t) [B([)], B() c: [B(t)] (see [lb] for
the proof).
Remark 4. If f0 ->_ for some constant > 0, thc. the restriction t -<

-t- can be waived.
In the lines below we give eamples of I’ontryagi’s problems where the

existence theorem above can be applied, but not Filippov’s theorem. Never-
theless, emples could be given where Filippov’s theorem applies, but not
the one above. The two theorems are independent. Also, we give an. exmple
where conditions (C), (C’), (I) are stisfied, as well as (a), (t), () (thus
certainly conditions 1 and 2 of the introduction), bu not (2), and there is
no optimal solution.
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5. An example with no optimal solution. The following example shows
that the condition represented by the logical union of (C), (I), and f0
convex in u (thus, both the function f0 is convex in u, and the subset Q(t, x)
of E is convex) is not sufficient to assure the existence of the absolute
minimum of I.

Let us consider the differential system

x’ u(1 v) -b [2 2-1(u 1)2]v,
y’ [2 2-1(u 1)2](1 v) + uv,

with tl 0, initial point (0, 0), fixed target (0, 1), and fixed coritrol space
U= [-l<=u<- 1,-1<=v<= 1].If

zl fl u(1 -v) + [2 2-1(u- 1)2] v,

z2 fz [2 2-(u 1)2](1 v) q- uv,

we see that the segment [v 1, 1 =< u -< 1] is mapped byf (fl, f) onto
the arc of parabola ABC [z 2- 2-1(u- 1)2, z2 u, -1 =< u =< 1],
whose points A (0, -1), B (3/2, 0),C (2, 1) correspond to
u 1, 0, 1, respectively. The segment [v 1, 1 =< u =< 1] is mapped

Uby f onto the arc DEF [zl 2-1u: + u- 3/2, z -u -t- 3, -1
-< u =< 1], that is, of the parabola (2zl + z2) 6(zl z.) 27 0,
whose points D (-2, 1), E (-3/2, 3), F (0, 3) correspond to
u -1, 0, 1, respectively. Each segment [u c, -1 _-< v =< 1] is mapped
byf onto the segment joining the points corresponding to (c, 1 and (c, 1)
on the two parabolas. Thus, the image Q f(U) of U is the convex body
Q (ABCFED) of the zlz-plane. Let us take the cost functional

I ft t2

Ix -- (Y t) -t- (an -t’- by - c) 2] dt,

where a 2 + %// 4.64575, b -6(/ //) -5.48220,
+ + 1. 9 es.

First we observe that the points (al, ) U, (a,/) Uwith
a 2 / 0.26795, 2- a 2 %// --0.64575,

6-1(1 /) --0.27429 are mapped by f into the points (zl 1, z2

1), (zl -1, z2 1). For k 1,2, .-., let u(t),v(t),O =_< 1, be
defined bytakingu(t) a, v(t) =/31, or u(t) a2, v(t) =/3.,, accord-
ing as belongs to the intervals k-(i- 1) __< < ]c-i(/- 1) - (2]c) -1, or

]c-(i 1) -k (2/)- _--< < k-i, i 1, 2, .-., ]C. Then the functions
x(t), y(t), 0 _-< _-< 1, satisfy the differential equations dx/dt :i: 1,
dyz/dt 1, where we take + 1, or -1, according as belongs to one or the
other of the two sets of intervals. Then x(t) --+ x0(t) 0, y(t) - y0(t)
uniformly in 0 _-< _-< 1 as k --+ . If C, Co denote these trajectories, we
say that C --+ Co.
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The question as to whether Co is actually a trajectory, that is, whether
there are admissible control functions u0(t), v0(t), 0 -< =< 1, whose corre-
sponding trajectory is Co, can be answered in the affirmative because of the
convexity of Q. Actually, the point (a0, /0) U with s0 2 /g

-0.23607, o (11)-1(4 /g) 0.16036, is mapped by f into
(zl 0, z2 1), and thus uo(t) ao, s0(t) =/0,0 =< _-< 1, generate Co.
Now, according as belongs to one or the other of the two systems of equal
intervals above, we have respectively

auk(t) - bvk + c aal + b -- c O,

auk(t) -- bk(t) -[- c aa2 -- b -- c O,

and thus auk(t) -[- bvk(t) -- c 0 almost everywhere on 0 =< =< 1,
/ 1, 2, -... On the other hand x(t) -- O, y(t) -- uniformly in [0, 1],
and thus, without computations, I[C] -- 0 as/c -- . Finally, aa0 - b/0 -- c

-0.47957 0, and

/[Co] f0 [02 - 02 -- (aao -- bo -t- c)] dt > O.

Let us prove that I has no absolute minimum in the class ft of all traiectories
satisfying the differential equations, boundary conditions and constraints
above.. Indeed, I[C] -- 0 shows that the infimum of I[C] in ft is zero, but
this value cannot be attained by I in t. Indeed, I[C] 0 implies x 0,
y t, au -+- by -t- c 0 almost everywhere, and then the first two relations
yield u ao, v /0 almost everywhere, while aa0 -- b/0 -- c 0, a con-
tradiction. Thus I cannot attain the value zero in ft.

6. Examples where the existence theorem applies. I. Let m n 1.
We consider the Pontryagin problem

I (x -t- u + 1) dt minimum,

x Au z7 u, x, u scalars, u U,

t o, x(o) , () ,
where A is a constant, A > 4. We have

fo x -t-u + 1, fo 2u,

f f Au +u, f A + 2u,

We can take

C 1. D 1, A (A -2)-,

U=[-l__<u__< 1],

undetermined,
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since f is strictly increasing and fu A -4- 2u >__ A 2 > 0. Also, U is a
segment and Q f(U) is also a segment (since n 1), namely, the seg-
ment [-A + 1 __< z =< A + 1] of the z-axis. Here U and Q are fixed sets,
arid they are compact and convex. The inequality ALD < C reduces to
the relation A > 4 which we required at the beginning. We have also
f0 >= 1, and the point x 1 is certainly accessible from x 0, since for
u lwehavex A A- 1 > 5andx l is reached in a time t2 < 1/5.
By our existence theorem, the problem above admits of an optimal solution.
Let us note that ] (f0, fl) and, for each x, the set ) f(U) is the arc of
curve in the z0zl-plane"

t2Zo x -+- + 1, z Au-4-u, -1 <= u <= 1,

and ) is not a convex set. Thus Filippov’s theorem cannot be applied.

II. Let m 2, n 1. Let us consider the Pontryagin problem

t2

I (u -- v -t- x -4- 1) dt minimum,

x -4- 2v + Au -4- x, u, v, x scalars,

(u,v) U-= ul A-Iv[ =< 1],

t O, x(O) 1, x(t) 1, t undetermined,

where A is a constant, A > 10. Let us note that U is convex and com-
pletely contained in the solid circle u A- v -<_ 1. We have

-4-x + 1, fo 2u, fo, 2v,

grad fo] 2(u -4- v)/z =< 2,

fouu=2, fovv=2, fou o,
f u + 2v + Au + x, fu 2u + A,

]gradfll__> A 2,

fiuu 2, fv=4, fluv =0.

We can take C 1, D 2, L 2. We shall now find a value for A. First
let us note that fl(U, v, x) has minimum and maximum values on U which
are-A A- 1 -t-x and A -t- 1 + x, and these values are taken respectively
at the vertices (-1, 0), (1, 0) of U. Let z0 f(uo, Vo, x) be a value taken
by f at some point, say w0 (u0, v0) U (for some fixed x). Let z be
any other value also taken byf on U (for the same x), and let wl (u, v)
be the point of U closest to w0 where z fi (u, v, x). Let S be the segment
of U joining Wo (Uo, Vo) to (-1, 0) if Zl < Z0, and to (1, 0) if zx > Zo.
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Thus fl takes on the value zl at some point (g, )ofS, and
wl w01 -< I w0 I. On the other hand, the directional cosines of
S are al > 2-1/2, 2-1/2,c2 -< and hence the directional derivative of fl along
S in the direction of u increasing is

dfl flu al nu fly a2 (A -t- 2u) CI -t- 4V02 > 2-12(A -t- 2u 4 v
ds

The function f 2u 4Iv] has the minimum value -4 on U, and this
minimum is taken at the two points (0, 4-1). Thus dfi/ds >- 2-/(A 4)
along S, and

]WI V0 [ W0 21/2(A 4)-l]z Z [,
We can take, therefore, A 21/(A 4) -1. The relation ALD < C reduces
now to A > 4 -t- 4/ which is certainly satisfied since A > 10. Here
Q f(U) is a segment since n 1, and thus Q and U are both convex
compact sets. Also, we have f0 >_- 1, and the point x 1 is certainly
cessible from x 0, since, for u 1, v 1, we have x A -t- 1 - x, and
the corresponding solution x(t) with x(0) 0 certainly goes beyond x 1
in a finite time. By force of the existence theorem above, the problem
admits of an optimal solution.

Let us note that ] (f0, fi), and, for each x, the set ) ](U) is the
set of all (z0, zl) with z0 f0, zl f, ]u[ + Iv _-< 1. Here z0 can take
its maximum value x - 2 only at the four vertices (4-1, 0), (0, 4-1) of U,
and to these points there correspond points (z0, zl) with z0 x -t- 2,
zl A -t- 1 -t- x, or zi -A - 1 + x, or zl 2 -t- x. Since these are the
only points of ( whose first coordinate z0 is maximum, z0 x 2, it follows
that is not convex. Thus Filippov’s theorem cannot be applied.

III. Let m 1, n 2. Let us consider the Pontryagin problem

I (z -t- y2 -t- u -t- 1) d minimum,

x’ 2(u -l- 1)(u -t- 1 + A), y’ -1 -t- (u + 1)(u -t- 1 + A),

u U, U [-1 -< u _-< 1], x, y, u scalars,

t O, x(O) O, y(O) O, x(t2) x, y( t:) yr

where t: is undetermined, and A is a constant, A > 2. We have

f0 x +Y -u: + 1, fo 2u, fou 2,

fl 2(u -t- 1)(u + 1 + A) 2(u + 1) + 2A(u - 1),

f. --1 + (u -t- 1)(u -t- 1 -t- A) (u - 1): -t- A(u + 1) 1,
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and, if f (fl, ft.), the set Q f(U) is a segment of the straight line
zl 2z2 2. If z(u) denotes z(u) (u - 1)2

_
A (u -t- 1), we see that

z 2(u 1) - A -> A, and zu 2, thus gradf A. We can take

C-- 1, L 2, A- (/A)-I, D-- -.
Thus, the inequality ALD .< C reduces to A > 2. We have also f0 >_- 1. By
the existence theorem above we conclude that the problem III admits of an
optimal solution for every point (x12, y12) which is accessible from (0, 0).

Let us note that] (f0,fi,f2) and that ) ]( U) is the curve in
(zozlz2)-space with z0 f0, zl fl, z2 f2, -1 __< u =< 1. Here the co-
ordinate z0 takes on its maximum value x -]- y - 2 (for fixed x, y) only
at the endpoints of ), that is, at the points (x+ y+ 2, 0,-1),
(x + y + 2, 4(A + 2), 4(A - 2) 1), and thus ) is not a convex set.
The theorem of Filippov cannot be applied.

IV. Let m n 2. We consider the Pontryagin problem

(x + y: + u + v + 1) dt minimum,

x Au, y (1 v)u2-k-By,

(u,v) U- [-1 _-< u =< 1,0_-< v_-< 1],

x(O) y(O) O, x(t2) O, y(t:) 1,

where A, B are constants, A >= 6, B >= 11. We have

f0 x + y2
_

u _/). -k- 1, f (fl, ft.),

and we take

X=f=Au, Y =f (1 -v)u + By.

First the rectangle U is mapped by f onto the region Q f(U)
[-A <= X <= A, A-X <= Y <= B], which is convex. Then we have

f0(Ul ,Vl) --fo(U2 ,/)2) ](/1 U2)(Ul + U2) -- (/)1 /)2)(/)1 + /)2)[
21/2r/ 1/2< [(ul--u2)2- (vl--v2)] L,ul+u2) -t- (/)1+/)2)]-- 23]2[(UI U2)2 t_ (/)1 /)2) 211/2

and thus L 23/2. We have also

0.. 2, fo o, 10. 2,

and therefore we can take C 1. Then we have
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X X. A u -u),

Ya Y. [(1 v)u +Bye] [(1 v)u-k- Bv.]

B(v v) -I- (1 v)(u u) + u[(1 va) (1 v)]

(B u?) (v v) + ( v)(u u) (u + u).

Since B u >- B 1, we obtain
--1v v. (B u) [(Y Y) (1 v)(ut u.)(u q- u.)],

[v v __< (B 1)-[1 Y Y. + 2A-[X Z [],
and hence

(ut u) + (vt v.) <= A-(X X)

+ (B 1)-[(X X.) + (r Y)](1 + 4A-)
[A- + (B 1)-’(1 + 4A-)](X X.)

+ (B- 1)-(1 + 4A-)(Y Y).
Since A >- 6, B >= 11, we have

(B 1 - 1 + 4A-) =< (100)- 1 + 4(36)-) (90)- < 4.9-,
A- + (B 1 )- 1 + 4A-) -< (36)-1 + 100)-1( 1 + 4(36)-)

(36)- + (90)- < 4.9-,
and finally

(ut u.) + (v v) =< 4.9-[(Xt X) + (Y Y)].
Thus, we can take A 2/9. Next, X X X 0, Y 2(1 v),
Y= -2u, Y,=O,[Y,,ul __< 2, Y[ =< 2, and

I + 2nl _-< 2 + n _-< 2(g + n).
We can take D 1. Finally,

2 .2/. 1 4V/ < 1 C.ALD - 9

The conditions of the existence theorem are satisfied, and thus problem IV
admits of an optimal solution for every point (x, y.) which is accessible.
For instance, x 0, y 1 is accessible since, by taking u 0, v 1, we

y,havex 0, B, hencex--- O,y =- Bt, and the pointx 0, y lis
certainly reached. Let us note that, in this example, f. is not a monotone
function of u.

Let us note that] (f0, f,, f.) and ( f(U) is a set of points (Z, X, Y)
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with Z f0. The set Q contains the points (3 + x2+ y2, 1, B),
(3 + x2+ y2,-1, B) of maximum Z-coordinate, but no point of the
segment which joins them. Thus Q is not convex, and Filippov’s theorem
cannot be applied.

V. Let m 2, n 1. We consider the Pontrygin problem

I (x+u+ v2+ 1) dt minimum,
tl

V Ux (1 + By, (u,v) U [-1 -<_ u <= 1,-1 -<_ v <- 1],

tl O, x(O) y(O) O, x(t) O, y(t2) 1,

where t is undetermined, and B >= 8 is a constant. We have fo x -t- u
+ v + 1, and we can take, as in problem IV, C 1, L 23/2. Let us take
X fi (1 v2)u + By. ThenX, B 2vu _-> B 2> 0, and
hence X > 0, and X is increasing with v. For v -1 we have X -B,
for v 1 we have x B, independently of u. Thus Q f(U) is the interval
Q [-B =< X -< B]. Given Xo (1- vo)uo+ Bvo and any other
X Xo, -B _<_ X =< B, there is somev such that X (1 v2)uo + By,
and we have

VX Xo (vo )uo + B(v vo),

IX-Xol I-ol[B-(+o)u:]>-- [-ol(B-2),

[ o[ -_< (B 2)- X Xo[.

Thus, if (, 0) is the point of U with X (1 2). + B0, at a minimum
distance from (Uo, v0), we have

This proves that we can take A (B 2)-1. We have now

fu 2(1 vZ), fu -4uv, f -2u,
]fu.I <-_ 2, ]f[ 4, ILI _-< 2,

and we can take D 2. Thus

ALD (B 2)-1.23/2.2 --< 4"Y/’ < 1 C.
6

By force of the existence theorem we conclude that problem V has an
optimal solution for every point (x:, y) which is accessible. In particular,
the point (0, 1) is accessible. Indeed, by taking v 0, u 0, the differential
system reduces to x’ 1, hence x t, and the point (0, 1) is reached at the
time t. 1. Here f2 is not a monotone function of u. If we take ] (f0, f),
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and ( )(U), we see, as in problem IV, that is not convex, and Filippov’s
theorem does not apply.

VI. This example shows a problem (containing a parameter A) which
has an optimal solution for A > 0 sufficiently large by force of the existence
theorem of 4, while the same problem has no optimal solution for A 0.
Let m n 2. We consider the Pontryagin problem

I [x "4- (Y t) "4- (au 4- by -4- c) -b A(u -[" v2)] d$-- minimum,

x’ u(1 -v) -t-[2 2-1(u 1)21v -t-4Au,

y’ [2 2-1(u 1)2](1 v) -4" uv -4- 4Av,

with tl 0, initial point (0, 0), fixed target (0, 1), and fixed control space
U [-1 -< u _-< 1, -1 =< v =< 1], and where a, b, c are the same constants
as in 5 reduced by the factor 10-1, that is, a 10-1(2 -f- /) 0.464575,
b -(3/5)(/- /5) -0.548220, c 10-1(-4- %/ A- %/
-f- /) 0.149628. Thus, for A 0, this problem reduces essentially
to the one studied in 5 and has no optimal solution. Now we have

f (f0,f ,f) with

fo x A- (y t) -]- (au -f- by -4- c) -4- A(u -f- v2), A >’- 0,

fl u(1 v) -f- [2 2-1(u 1)21v A- 4Au,

f2 [2 2-1(u 1)2](1 v) -4- uv 4- 4Av.

Thus

fo, 2a(au A" by ’t c) + 2Au, fo, 2b(au -4-- by + c) A-- 2Av,

f0u 2(a A- A), f0 2ab, fo,,,, 2(b -t B).

Since -1 -<_ u <= 1, -1 -<_ v <= 1, we have ]au-+-bv-f-c <= a-4- b]
-t- c < 1.2, ifo I, If0, < (1.2)(1.1) + 2A, (flu A-]0,)l/ < %/’(1.32
-4- 2A), and we can take L /-(1.32 A- 2A). For every u, v, u0, v0,

we have

A(u + v) + (au A-- by -+- c) A(uo -1- v02) A- (auo A-- bvo A- c)

+ 2A(uou + VoV) -+- 2(auo A- bvo A- c)[a(u Uo) -f- b(v Vo)]

"t" a[(u Uo) -4" (v v0)1 -[- [a(u uo) "4- b(v v0)],
where the last term is nonnegative. Hence,

A(u-k-v) -4-(au-l-bvA-c)>=z(uo,vo,u,v) + A[(u- Uo)2+ (v yogi,

where z is a linear function of u and v. This proves that we can take C A.
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fi, 1 uv q-- 4A,

V

,,= (1 -u)

f, (2 u) 2-(u 1),
], --u, f,, 0,

f= 2-(1 u)" (2 u) + 4A,

]= -(1 v), f,., u, f,, o.
Then

1 +2+0+2+2+0=7,
and we can take D 7/2. Finally,

flu 4A 3, [fl] 3, If2[ 3, lf, 4A 3.

If (ux, vl), (u=, v2) are two points of U and (X, Y), (X=, Y=) the corre-
sponding values of (f, f=), we have, for A > 3/2,

x, x,I (4A 3) ! 31 v=l,
r Y,i (4A 3) Iv, v,I a lu u,l,

[(x, x=)= + r, Y=)=] max ( x z, I, r Y, )

2-1(4 6)(I u u, [+ Iv, v, ).
Thus

[(z x=) + (Y Y=)]/= > (2A 3)[(u u) + (v, va)

and we can take A (2A 3)-. Thus, for A 7, we have

ALD (2A 3)-- (1.32 + 2A). (7/2)

A. (7 /2)(1.32 A- + 2 A-) (2 3 A-)-A.(7/2)(1.32.7- + 2.7-)(2 3.7-)-
< (0.98482)A < A C.

If o, f20 are the expressions of fx and f= at A 0, and ] u, ]= v, then
both transformations z fxo, z2 f=0, and z f, z f, map U onto
a convex set. Indeed, the st transformation was studied in }5, and the
second one is affine. Thus the transformation z f fo + 4A],
z= f= f=o + 4A]= also transforms U into a convex set. The point (0, 1) is
certaiy accessible from (0, 0). Indeed, for v 0, we have x (4A + 1)u,
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y 2 (u 1) and hence for v(t) 0, and u(t) 1/2 if 0 -< =<
t./2, u(t) -1/2 if t/2 < =< t, t. 8/11, we hve x’ +/-(4A 4- 1)/2,
and y’ 15/8, or 7/8 respectively, nd finally x(t) O, y(t)

(15/8)(8/22) - (7/8)(8/22) 1. By force of the existence theorem
the Pontryagin problem above has certainly an optimal solution for A >__ 7,
T >_ 8/11.
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ON VARIATIONAL THEORY AND OPTIMAL CONTROL THEORY*

MAGNUS R. HESTENESf

1. Introduction. During recent years the general problem of Bolza has
become increasingly useful in optimal control theory. Unfortunately the
classical formulation of the general problem of Bolza (see [1]) is not a con-
venient one for applications of this type. Consequently a new formulation
has arisen which appears to be preferable to the classical one. The first
formulation of this newer type, known to the author, is the one given by
him [2] in 1949. The author was convinced at that time that the new formu-
lation was superior to the old and has urged individuals to pursue this ap-
proach. It was not until the coming of the work of Pontryagin (see [3]) that
the new formulation came to the fore. The maximum principle of Pon-
tryagin embodies the first order necessary conditions for the problem of
Bolza. It can be obtained from the theory of the problem of Bolza by trans-
lation. This was carried out in [2]. However, it is desirable to obtain this
principle directly. This was done by Pontryagin, using a modification of a
method devised by 5/[cShane [4]. The work of McShane is a significant
extension of the works of Graves [5], Bliss [1], and Bolza. h/[cShane was the
first to establish first order necessary conditions without assumptions of
normality. He did this by the use of a theorem of separation of cones, one of
which degenerated to a hairline. Pontryagin used the same cones and made
the important observation that these cones can be generated by limiting
oneself to strong variations. McShane used both strong and weak varia-
tions. Since the cones used were closed, and since weak variations can be ob-
tained as limits of strong variations, it is clear that the use of weak varia-
tions is unnecessary.

In the present paper we extend the methods of V[cShane and Pontryagin
so as to enlarge the class of convenient applications. The results are not
essentially new, since they have been embedded in the theory of calculus of
variations and can be obtained from the results of McShane and Valentine
[7]. However, it appears that the details of proof have been simplified.
The present paper is in part taken from the lecture notes of the author

given at UCLA during the spring semester, 1963. We shall be concerned
only with first order necessary conditions. The results here given have been
established by Guinn [8] under weaker hypotheses. Sufficient conditions

* Received by the editors September 14, 1964, and in final revised form December
4, 1964. Presented at the Symposium on the Mathematical Theory of Optimal Con-
trol, held at the University of Michigan, October 5-7, 1964.

f Department of Mathematics, University of California, Los Angeles, California.
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2: MAGNUS R. HESTENES

for local minima have been given by Pennisi [9] and in part by Niookini
[10], using the method developed by M:cShane [11] and by the author [12].

2. Formulation of the problem. In the present paper an arc will be con-
sidered to be a system

(t), u(t), b, < < ;i- 1,...,n;t- 1,...,q;o-- 1,...,r,

of n continuous functions xi(t), called state functions, q piecewise continuous
functions u(t), called control functions, and r constants b, called control
parameters. It will be convenient to designate an arc by the single symbol x.
Thus, in vector notation,

x: x(t),u(t),b, -<_ t-<_ .
The symbol x is therefore used in at least two senses, namely, to denote an
arc as above and to designate a point x (xl, x’). However, the
context will make clear in which sense it is to be interpreted.
The problem to be considered is that of minimizing a function

Io(x) go(b) -t- Jt Lo(t, x(t), u(t), b) dt,

in a class of arcs

x: x(t), u(t), b, <-_ <- ,
satisfying a system of differential equations

(2.1) 2i(t) ](t, x(t), u(t), b),

(2.2)
,(t, x(t), u(t), b) -<_ 0, 1 __< a -< m,

(t,x(t),u(t),b) O, m < -<- m,

a set of initial and terminal conditions

(2.3) ts= TS(b), xi(t) Xi*(b), s- 1, 2,

and a set of isoperimetric relations

I. (x <- O, 1

_
.y <-_ p,

(2.4)
Iv(x) O, p <’ <= p,

where

(2.5) I.(x) g.(b) + Jt L(t, b) dt.

This problem will be referred to as the optimal control formulation of the
problem of Bolza. An equivalent problem formulated in a more classical
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manner is that of minimizing a function

Io(X) go(b) + Jr, Lo(t, x(t), (t), b) dt

in a class of arcs

z: x(t),b,

satisfying conditions of the form

(2.6a)
a(t, x, 2, b) -<__ 0,

,(t, z, 2, b) O,

(2.6b) = T"(b), x(t) Xi"(b),
I(x) <- O,

(2.6c)
I(x) O,

Here

-< <= ’,

l<__a<__m,

m <o<m,=
s 1,2,

l <=.<=p,

p <’<-p.

P

I(x) g(b) - Jt L(t, x(t), 2(t), b) dt.

This problem will be called the isoperimetric problem of Bolza with inequality
constraints.
The second problem is the special cse of the first in which the differential

equations (2.1) take the form 2 ui. The first can be reduced to the
second by introducing new state functions

z’+ (t) ’u’ (s) ds,

and adding the conditions

X
A-k O, X

n-l--k b +,
where br+, b"+q are new control parameters. The details of this sub-
stitution will be left to the reader.

Inequality constraints can be replaced by equality constraints by a
method used by Valentine [7]. However, this does not simplify our pro-
cedures and so we shall not pursue the matter. One can also eliminate iso-
perimetric conditions if one desires, but again this does not simplify our
procedures. There are other modifications that can be made. For example,
one can assume that b does not appear in f, ,, L,, since these can be
eliminated by introducing new state functions x+(t) subject to the con-
ditions

2’+ O, x’+(t) b, s 1, 2.
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Turning now to the control problem, it will be assumed that all functions
used are of class C’ on a region 6t in (t, x, u, b)-space. The class of all ele-
ments (t, x, u, b) in 6 satisfying the conditions

(2.7)
q(t, x, u, b) __< 0, 1 _-< a_-< m,

.(t, x, u, b) 0, m < a =< m,

will be denoted by 6o and will be called the class of admissible elements.
An arc

x: x( t) u( t) b, -< <= ,
will be called admissible if its elements (t, x(t), u(t), b) are in 0 The class
of admissible arcs will be denoted by a. The class of admissible arcs satis-
fying the conditions (2.1), (2.3) and (2.4) will be denoted by (. We
assume that we have given an admissible arc

xo: xo(t), uo(t), bo, <- <-_ ,
in. ( that minimizes I0(x) on 5. In addition, we assume that the matrix

(0, ) a,/ 1, m; not summed;(2.8) \-U- ti,., / 1, ,q; 5, 1, ti,o 0(a )"

has rank m at-each element (t, x0(t), u, bo) in (o. Here a denotes the row
index and k, are column indices. The determinant (2.8) has rank m at
an element (, 2, g,/) if and only if the matrix

Ouk]
a al ,at.,

has rank r, where al, a, are the indices at which

,(i, 2, 7, b) 0.

The problem at hand is to determine properties of x0 which are conse-
quences of the fact that x0 minimizes Ioon (.

3. First order necessary conditions and a maximum principle. The main
theorem to be established in the present paper is the following. (Here and
elsewhere a repeated index in a term denotes summation with respect to
that index unless otherwise specified or implied.)
THEOREM 3.1. Suppose that the arc

< <Xo xo uo bo

described above affords a minimum to Io on 5. Then there exist multipliers

o >- O, p(t), u,(t), ./ 1, p; i 1, n; a 1, m;
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not vanishing simultaneously on <-_ <= 2, and functions
H(t, x, u, b, p, ) pif hoLo hL

G(b) hogo + hg,

such that the following relations hold.
(i) The multipliers are constants and >= O, 1 <= . <-_ p, with 0

in case I Xo < O.
(ii) The multipliers .(t) are piecewise continuous and are continuous at

each point of continuity of uo(t). Moreover, for each a <-_ m’, the relation
t,(t) >= 0 holds and the equation

(3.1) ,(t),(t, xo(t), uo(t), bo) O, not summed,

holds on 2.
(iii) The multipliers p(t) are continuous and have piecewise continuous

derivatives. In fact there are constants ci c such that the relations

f(3.2) p --_ H ds - H H ds - c, Hu O.,
hold along Xo with pi p(t), t t,(t).

(iv) The transversality condition,

,4Visls=2 f(3.3) dG -- [-H dT" -- p(T’) . ,= H.db dt O,

is an identity in db on Xo
v The inequality

(3.4) H(t, xo(t), u, bo p(t), O) <= H(t, xo(t), uo(t), bo, p(t), O)

holds whenever (t, x0(t), u, bo) is in o.
The formul

(3.5) H H ds -{-- c

is an abbreviation of the formula

H(t, xo(t) uo(t) bo p(t) t(t) Ht(s, xo(s) Uo(S) bo p(s) (s) ds - c.

It states that H is continuous along x0 and has a piecewise continuous de-
rivative given by Hr. A similar remark holds for the first integral in (3.2).
Equations (3.2) are equivalent to the statements that p, H are continuous
along x0, and that on each subarc on which u0(t) is continuous we have

dpi H dH Ht H O.
dt dt
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The equations

--H, c H fi, H,, 0,

are the Euler equations for our problem and the inequality (3.4) is the
condition of Weierstrass.
The relationH 0 is consequence of the condition of Weierstrass. In

fact, it can be shown that (3.5) is consequence of (3.4) and the relation

p H ds + c

The maximum principle given in Theorem 3.1 is often called Pontryagin’s
maxinum principle. It can also be found in [2].

In the inequality (3.4) we have set t, 0. If one wishes to retain ,
v,(t), the condition (3.4) may be stated as follows" At each element

(, 2, g, b0, , ) with

x0(), a u0(), p p(), ,(),

the inequality

H(, 2, u, b0, p, Z) - Z,,(, , u, b0) _-< H(i, , , b0, p, t7)

holds whenever (i, , u, b0) is in (R0. In obtaining this inequality we made
use of (3.1).
The corresponding result for the isoperimetric problem of Bolza with in-

equality constraints is given in the i’ollowing theorem. We assume, of
course, that the matrix (2.8) with u 2 has rank m along x0. The class
of admissible arcs satisfying (2.6) will be denoted by 6t in this case also.
THEOREM 3.2. Suppose that the arc

Xo" xo(t), bo, 2,
affords a minimum to Io on (. Then there exist multipliers

o >= O, h ,(t), " 1, p; a 1, m;

not vanishing simultaneously on <= , and functions
G(b) hogo - hg,

such that the following relations hold.
(i) The multipliers . are constants and ). >= O, 1 <= " <-_ p, with h 0

in case I. xo < O.
(it) The multipliers ,(t) are piecewise continuous and are continuous at

and theeach point of continuity o 2o(t). Moreover, (t) >= O, a <__ m,
equation

,.(t).(t, Xo(t), Zo(t), bo) O, not summed,

holds on <= <-_ .
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(iii) There exist constants c, Cl such that the relations,

F X t i Ft ds -- c, F. Fx ds -- c.

hold along xo with t,, (t).
(iv) The transversality condition,

dG + [(F- x ) dT + F aA = + F db dt O,

is an identity in db along xo
(v) At each element (t, x, 2, b, ) on xo one has

E(t, x, 2, u, b, ) ,,(t, u, x, b),

wheneer t, x, u, b) is in o where E is the Weierstrass E-functit

E(t, x, 2, u, b, ) F(t, x, u, b, ) F(t, x, 2, b, )

(u 2")F.(t, x, 2, b, ).

This result is an easy consequece of Theorem 3.1. Since u plys the
role of 2, we have

H pu F(t, x, u, b, ),

and hence

H,,, p.i F, 0, Hxi --F:i Ht -Ft Hb --Fb,

along x0. Using these facts, one obtains Theorem 3.2 from Theorem 3.1.
Theorem 3.1 can be obtained from Theorem 3.2 by the use of the trans-
formationsdescribed in 2.
The proof of Theorem 3.1 will be simplified if we assume that the range
.-<_ =< is fixed. To show that no generality is lost thereby, we replace

the vari:ble by a state variable x(t) subject to the conditiol

where

/Ioreover, we set

0(t) u(t) > 0,

xO(t.) T.(b) X(b),

t’ .7’ (b0), T (b0).

xo(t) t, uo(t) ,
and introduce the functions

L L(x, x, u, b)u, . .(x, x, u, b)u,
.?o uo ": :f x x, u, b u
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The problem then becomes that of minimizing
t2

Io(x) go(b) + ft Lo(x(t), u(t), b) dl,

in a class of arcs

x: x(t), u(t), b,
satisfying the conditions

;j O, 1,.-.,n;k O, 1,

where

I(x) g.(b) -4- f, L(x(t), u(t), b) dr.

Since we have oifly altered the variable of integration, the arc

Xo Xo t, Xo Uo 1, Uo bo

is a minimizing arc for the new problem. Suppose now that Theorem 3.1
has been established for this new problem except for the relation (3.5). We
shall show that the theorem holds as stated for the original problem. Let

I pjfy-- L (po + H)u,
where

L x,L, + ...
Since

(3.6) H.0 P0-4-H 0,

along x0 we have

po(t) -H(t, xo(t), uo(t), bo).

Moreover, along x0,

/-Tx0u 1,
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It follows that (3.2) and (3.3) hold along Xo, as stated. Since /7 -= 0
along x0, the condition (3.4) for the transformed problem takes the form

(po(t) q- H(t, xo(t), u, b, O) )u <= O.

In view of the relation u > 0, it follows from (3.6) and (3.1) that (3.4)
holds for the original problem. We can accordingly assume that the in..
terval <_- _-< is fixed for all arcs in 08, as was to be proved. We have
shown also that (3.5) is a consequence of the remaining conditions for a
minimizing arc, and a separate proof of this result need not be given.

4. An auxiliary lemma. In the course of our proof we shall need a
property of the class (R0 of admissible elements (t, x, u, b). This property is
described in the following lemma. In this lemma

XO" Xo(t), Uo(t), bo, 2,
is an admissible arc in 08 such that the matrix (2.8) has rank m.
LEMMA 4.1. There exists a function Uo(t, x, b) defined over a neighborhood

ff of those on Xo such that t, x, Uo, b) is in 6{o and

(4.) Uo t, xo bo uo <__ <__ .
The function Uo and its partial derivatives with respect to x and b are con-
tinuous except at the values of at which no(t) is discontinuous. At a point
of discontinuity of uo(t), these functions have continuous left- and right-hand
limits. Moreover, if we set

(4.2) r(t) OU OU
.Ox--7- sk(t) -Ob

along xo the relations

(4.3) o, -}- qOauri 0, qab, -}- qOau8 O,

hold on xo for each and each value of such that

(4.4) ,(t, xo(t), uo(t), bo) O.

In the course of the proof of Lemma 4.1 we shall also prove the following
result.
LEMMA 4.2. Let (, "2, (t, bo) be an element in (Ro with "2 Xo(). There is a

function U(t, x, b) defined over a neighborhood 9 of (i, "2, b0) such that (t, x,
U, b) is in (Ro and

U(, "2, bo) .
The function U and its partial derivatives with respect to x and b are con-
tinuous on this neighborhood.
Return now to the proof of Lemma 4.1. Consider first the case in which
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m 0. Then (0 is the set of points (t, x, u, b) in (R having

q(t, x, u, b) 0, a 1,... m.

Moreover, the matrix (2.8) has rank m at a point (t, x, u, b) in (0 if and
only if the matrix

has rank n at this point.
Suppose next that Uo(t) is continuous on - 2. The the function,s

w., o. t, xo uo -o
0u

a 1,...,n;/c 1,...,q;

are continuous on _-< =< 2. Extend the functions Uok(t), w,k(t) to be cor-
tinuous on an extended interval ti =< _-< + ti for ti > 0. Since the
matrix (4.5) has rank m alog xo, it follows that the m-dimensional de-
terminant

w’()w(t) I, , ,"",

has rank m on =< _-< . This determinant is the functional determiat
with respect to z of the equations

,,(t, x, uo(t) + w(t)z, b) 0

along the initiM solution (t, x, b, z) (t, xo(t), b0,0) on =< _-< . By
the implicit function theorem these equations have continuous solutions,

z Z(t, x, b),

on a neighborhood ff of ihe elements (t, x, b) on x0 such that

Z(t, xo(t), bo) O, t’ <= <= t,

and such that Z(t, x, b) has cotinuous partial derivatives with respect to
x and b on ft. The functions

Uok(t, x, b) uo(l) + w(t)Z(t, x, b)

have the properties described i.n the theorem, as one readily verities.
The case m > 0 can be reduced to the case m 0. This follows because

a point (t, x, u, b) is in 0 ff and only if there exist numbers v, ’such that

(4.6) " " - (") 0, a =< m,, 0, m a < m.

The matrix (2.8) has rank m at (t, x, u, b) in 6t0 if and only if the matri
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/0 m-V]’ a= l, ..-,m;]c 1, ,q;=’ 1,

has rank m at the corresponding point (t, x, u, v, b) satisfying (4.6) with

v [--e(t, x, u, b)]1/2,
Considering v "’,..., v to be additional u’s, it follows from the result
given in the last paragraph that equations (4.6) have continuous solutions

Uo(t, x, b), Vo(t, x, b), k 1,... q; 1,... m

defined on a neighborhood ff of the values (t, x, b) on x0 having continuous
partial derivatives with respect to x and b. Moreover (4.1) holds. We
have, by (4.6),

0 Uo 0Vo" 0,, +,+ 2V Ox

and a similar formula for derivatives with respect to b. Since V0" 0
when (4.4) holds, one obtais (4.3).

It remains to consider the case in which no(t) has discontinuities at points
t, t_. These points divide xo into subarcs x0, x0, on each
of which u0(t) is continuous. Let U0(t, x, b) be the functions with domains
ff] related to the arc x0y as described above. Set

Uo(t,x, b) Uo(t,x, b), t_ ty (t,x, b) infix;

where t0 , t t: + and is a small positive constant. The func-
tion U0(t, x, b) so defined has the properties in the lemma.
Lemmu 4.2 can be considered to be the special case of Lemma 4.1 in

which x0 degenerates to point.

5. A reformulation of the problem. As remarked at the end of 3, we
can assume that the functions T(b), T(b) are independent of b. This
assumption simplifies some of the formulas given below and hence will be
made throughout the remainder of this paper unless otherwise expressly
stated. The interval is then the same for all arcs in

Let be the class of all admissible arcs

x: x(t), u(t), b, ,
on the fix rnge that satisfy the differential system

(5.1) 2 f(t, x, u, b), xi(t1) Xi(b).

The problem at hand is then that of minimizing Io(x) on subject to the
conditions
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I,(x) <= O,

I,(x) O,

1<,<

p’ <. <= p,(.)

xi(t2) Xi2(b).
It will be convenient to introduce p - n + 1 new functions

P

Jp(x) Gp(b) + F(t,x,u,b) dt, p 0,1,... ,p-t--n,

such that x0 is a solution to our original problem if and only if x0 minimizes
J0(x) subject to the conditions

Jp(x) <= O, 1 <= p <= p,
(5.3)

Jp(x) O, p’ < , <= p + n.

These functions are to be chosen so that for a given function Uo(t, x, b)
related to x0 as described in Lemma 4.1 we have

(5.4)
Ox

[F(t, x, Uo(t, x, b), b] 0

along x0.
In order to construct the functions J,, let

(5.5) rjk(t) OUok(t, xo(t), bo)
c)x

and set

(5.6)

0Aji(t) [fi(t, x, Uo, b)] fj -t- firj,

kB.(t) [L.(t, x, Uo b)] L:+ +
where the right members are to be evaluated along x0. For 0, 1,
set

F L Bx - qi(t)(f- A/x),
(.7)

i2 1G g. q.(t )X - q( )Xil,
where qi are solutions of the system

(5.8) - qA - B O, q(t) O.

For an arc x in e we have

d--t (qx) --Bx - q(f Ax)"

,P,
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Using this fact together with the relation q,.(t2) 0, it is seen that on e,

J,(x) I,(x) [q,(t’)X]= ft d
x=+ -t(q )dt=(x

For i 1, n, we set

F+ P(t)(f- Ax),
(5.9)

sls=2Gv+. [Pi(t) =,

where P(t) are solutions of the system

(5.10) P + PAy’ O, P(t) .
For an are x in e we have, by (5.7) and (5.1),

dJ+(x) G+ + J (x) dt (t) ().X

The conditions (5.3) are accordingly equivalent to the conditions (5.2)
on e. It is simple matter o verify that (5.4) holds.
An nlogue of Theorem 3.1 for the reformulated problem is given in

the following.
Tnnoan 5.1. Suppose that Xo minimizes Jo(x) on e subject to (5.3). Theu

there exist constant multipliers M O, X X+ not all zero, and func-
tions

F(t,x, u, b) XF, (b) G, 0,1, p + u,

such that
wih =0 J(xo) <0;(i) o, gwgp,

(ii) theinequaliy

(5.11) F(t, x0(t), u, 0) F(t, Xo(Z), Up(t), o)

holds on whenever (t, xo(t), u, bo) is in o
(iii) the transersality coditian

(5.12) + f (Fs + F,) db dt 0

is an identity in db along xo where

k OUok(t, xo(t), bo)(5.13) s Ob

The proof of Theorem 5.1 will be given in 7. As a further result we have
THEOREM 5.2. Let F and be related to Xo as described in Theorem 5.1.

There exist piecewise continuous multipliers g.( t) that are continuous at each
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point of continuity of uo( t) and are such that the equations

(5.14) F + t,(t),, 0

hold along Xo Moreover, (t) >- O, a <= m, and

(.1) o(t)o o, not summed,

along Xo. If we set

the transversality condition 5.12 takes the form,

(5,c,) d + I db dt O,
,at

on Xo Jot all db’.
In order to prove this result, let

f(t, u) F(t, xo(t), u, bo), ,.(t, u) .(t, xo(t), u, bo).

By virtue of (5.11) the value u uo(t) affords a minimum to f(t, u) subject
to the constraints

cp.( t,u <-0, o <__m,

,(t,u) O, m < a <= m.

By virtue of the results to be given in the next section or by virtue of the
multiplier rule for minimizing a function of a finite number of variables
subject to constraints, it follows that for each on __< -< there exist
multipliers 0 >_- 0, g,(t), not all zero, such that

at u uo(t), and such that (5.15) holds, together with the relations
t,(t) >__ 0, a -< m’. Since the matrix (2.8) has rank m on x0, the relations
(5.17) and (5.15) cannot hold with o 0 unless t,(t) 0, a 1, m.
This implies that 0 0 and can be chosen to be unity. The multipliers
,(t) are then unique. Using the fact that the matrix (2.8) has rank m on

x0, it follows from (5.17) and (5.15) that ,(t) is continuous at each point
of continuity of uo(t). Setting fi F + t,(t),,, it is seen that

fi 0 along x.
Using the relations (4.3) and (5.15), we coclude that

f .(t) l.s dt 0+
along x0. Adding this result to (5.12), we obtain (5.16). This establishes
Theorem 5.2.
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By the use of Theorems 5.1 and 5.2 we can establish Theorem 3.1 as
follows. Let Xp be the multipliers given in Theorem 5.1 and set

p(t) --h,+P(t) Xq(t), O, 1, p.

In view of (5.8) and (5.10) the functions pi(t) satisfy the equations

) + pAi XB.
Consequently, if we set

H t, x, u, b, p, p]f hL
we have, by (5.7) and (5.10),

(5.18) H(t, x, u, b, p(t), (t) -p(t)x F -px ,
where F nd are the functions appearing in Theorems 5.1 and 5.2. By
virtue of (5.11) we see that the inequality

H(t, xo(t), u, bo, p(t), O) H(t, xo(t), uo(t), bo, p(t), 0)

holds whenever (t, xo(t), u, bo) is in o. Observe fther that along xo with,. ,.(t),
(5.19) H - 0.

Using (4.3) and the fact that ,(t) 0 if

.(t, xo(t), no(t), bo) < O,

it follows that Mong xo we have

,.(t) {. + .r} 0,

where r is given by (5.5). Combining this result with (5.4) and (5.19),
and setting u Uo(t, x, b) i (5.18), it is found by differentiation that,
along Xo, one has

-H Hri -Hi.

Finally, by (5.7) and (5.9),

G + [p(t’) ,,
where G hg. Inasmuch as

H.
along xo, (5.16) yields the transversality condition.,

is]s=2+ [p b O,

along z0 for all db. Theorem .1 herefore holds as sgaged when t and are
fixed, as was go be proved.
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6. A fundamental theorem. In the present section we digress for a moment
and consider a set of real valued functions Jp(x), p O, 1, p,* defined
on a space C of elements x. The nature of the class C is immaterial. How-
ever, we need the concept of one-sided derivatives of Jp at the initial point
of a curve in . Let x0 be in and let

x(t), 0 <__ <-_ ,
be a curve in a such that x(0) x0. The vector/c (/c, ,/c) defined
by the formula

d
t=o

J(x(t))

if it exists, can be considered to be a derivative of J, p O, 1, p,
at x0. However, this definition of a derivative is not restrictive enough for
our purposes. What we need is a concept that insures us that for any finite
set of derivatives 1 N, every linear combination

with nonnegative coefficients is also a derivative. This can be accomplished
by the definition of a derived set of vectors given in the next paragraph.
It should be noted that it is not essential to generate the class of all deriva-
rives of J at x0, but to generate a class of derivatives large enough for our
purposes.

Let x0 be a point of a. A set K ofvectors 1 (/c, k) in a Euclid-
ean space +1 will be called a derived set of vectors for Jp at Xo on if, given
any finite set of vectors k, k in K, there is a function

defined on a set

(6.1) 0 =< =< , j 1,...,N;ti> 0;

such that x(0) x0 and such that the functions

f(e) J(x(e)) J(xo), p O, 1, p,

are continuous on the set (6.1) and have

df k d
as their differentials at 0 on the set (6.1). It is readily verified that if K
is a derived set for J, at x0, so also is the convex cone K* generated by K.

* Here p plays the role of p + n in the last section.
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The cone K* is of course the class of all vectors ] of the form

(6.2)

where a. >__ 0, k is in K and N is arbitrary. Observe that if k is a vector of
the form (6.2) and
and x0 as described above, then, upon setting e(t) at, the curve

2(t) x(e(t)), 0 t,

is in if t’ /( + + a). Moreover,

(6.3) k d J,((t)

The vectors k in K* are therefore derivatives of J in the sense described at
the begiing of this section. Since K* is a convex cone we shall refer to it
as the derived cone generated by K. It should be noted in passing that
vector k in the closure K’ * of K’need not be a derivative in the sense
described ubove.
We are now in position to state a fundamental theorem which is a gener-

alized Lagrange multiplier rule. It is the basis of a large class of multiplier
rules. In particular, it is the basis of the multiplier rule stated in the pre-
ceding pages.
THEOREM 6.1. Suppose that K is a deried set for J at Xo on . If Xo mini-

mizes Jo(x) on subject to the constraints

J(x) O, 1 p,
(6.4)

J(x) =o, p < p,

then there exist multipliers o O, , not all zero, such that the
inequality

(6.5) i() x 0

holds for every vector in K and hence for every vector in the closure K of the
convex cone generated by K. Moreover, O, 1 p, with 0
in case J Xo < O.
The fact that 0 when J(xo) 0 signifies that J plays no role in

the multiplier rule. Intuitively this follows because when J(xo) 0 the
condition J(x) 0 is not a constraint locally.
The inequMity (6.5) on K* can be given the following interpretation in

terms of the function J h,J. Recall that to each vector in K* there
is a curve

C: (t), 0 t,

in containing x0 for 0 and such that k is the derivative of J, at x0
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along C, as indicated by (6.3). From this fact we find that

(6.6) dd__t J((t) It=o d_ J((t)
t=o

L(t).

The inequality (6.5) therefore states that the derivatives of J J at x0
along admissible curves C re nonnegtive.

Turning now to the proof of Theorem 6.1, observe that it is sutticient to
consider the case in which K coincides with its convex closure K*. We shll
accordingly assume that this is the case. Then K is a convex cone in t+.
Let K- be second cone whose nonzero elements consisting of all vectors
k re of the form

/0 0,

(6.7) k < 0, 1 =<, =< p and J(xo) O,
]c 0, p

Let K+ K K- be the set of all vectors of the form/ k-, where/
is in K and k- is in K-. The classes K+ and K- are convex cones in ;+.
Theorem 6.1 will be established with the help of four lemmas, the first

of which is the following.
LEMMA 6.1. Suppose there exists a vector k 0 in+ which is not in K+.

Then the conclusions in Theorem 6.1 hold.
Observe first that by virtue of convexity the interior of the cone K+ is

also the interior of its closure/+. Since K+ is not all of ;+, it ollows that
/+ cannot coincide with +. If ] (- 1, 0, 0) is not in/+, choose
k0 ]. Otherwise, let/Co be any unit vector not in/+. Let k be the vector
in/+ nearest to/Co. If/ is in/+, so also is k -t- t/c, _-> 0. The function

g(t) 1/21k - ttc ko , >= O,

therefore has a minimum at 0. It follows that

(6.8) g’(0) (]1- /Co,/c) _>_ 0,

where (h, ]) is the usual inner product in p+l. If we select k kl, then
g(t) >= g(0), >__ -1. In this event the value of g’(0) is

(6.9) (k- /Co,/cl) 0.

We shall show that the multipliers

k ko

have the properties described in the theorem. By (6.8) we hve

L(k) hfl >=_ 0
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defined by theen f:+ and hence on K. The vector ], , 0, 1, p,
relations

l, 1, l" O, p,

is in R+ since --/ is in the closure - of K-. Hence

L(f,) X 0, T 0,1,...,p.

If J,(xo) < O, 1 p, then -f, is also in +. Consequently -X, 0.
Hence , 0 in this case. Similarly, if f -f0 is in +, then h0 0. If

is not in K+ then k0 f, by virtue of our choice of k0. In this event it
follows from (6.9) that

Hence ]k < 1 and k < 1. Consequently,

o k- ko -k+ 1 > 0,

when o . This completes the proof of Lemma 6.1.
LnM, 6.2. If the cone K+ K K- coincides with +, there exist

N p p’ + 1 vectors k, in K, whose sum

+ + k
is in K-, and such that the N 1) X N-dimensional matrix

(6.10) (k), =p + 1,...,p;j 1,...,N;

has rank N 1.
Since K+ coincides with +1 we can select N vectors kl, k such

that the matrix (6.10) has rank N 1 and such that

p(6.11) k +-.. +k= 0, + 1 p.

Inasmuch as k is in K+, there are a vector in K and a vector in K-
such that k k’ . Since 0, p’ + 1, p, it follows
that k k + has the properties assigned to k. The vectors k,
k therefore can be chosen to be in K.

It remains to show that these vectors can be modified so hat their sum
is in K-. To this end observe first that there is a vector ’ 0 in K- that

is also in K. For, let k 0 be a vector in K-. Since is also in K+ we can
choose k’ in K nd k" in K- such that k’ k". The vector ’ k + "is a nonnull vector in K- which is also in K. For a small positive number e

the vector k* k’ + e will be in K- us well us in K. The vectors. 1 k



42 MAGNUS R. HESTENES

are in K and have their sum ]c* in K-. Since/’ is in K-, the matrix (6.10)
with/, replaced by/.* is unaltered and hence has rank N 1. This proves
Lemma 6.2.
In view of Lemma 6.1 the proof of Theorem 6.1 will be complete when we

have established the following.
LEMMA 6.3. The cone K+ K K- does not coincide with
Suppose that K+ coincides with P+I. Select N p p’ + 1 vectors

/, ,lcN in K having the properties described in Lemma 6.2. By virtue
of the definition of a derived set there exists an N-parameter family

x(,..., ), 0 =< - _<_

of points in e such that x(0) x0 and such that

fo( e) J(x( e) Jp(xo), p O, 1, p,

is continuous and has

dfp k de

as its differential at 0. Choose/ 1, j 1, N. Then

kilts= ,
where/ k + + k. Recall that/ is in K-. If is sufficiently small,
the quantities

tft + ty, 0 <-. <-_ , ]yl <= 1,

will satisfy the relations 0 =< - -_< i. Set

1F(y, t) -[f(tf + ty), 0 <

F(y, O) -- ky, p O, 1,..., p.

Since f,(e) has k- de. as its differential at e 0, we have

(6.12) lira Fo(y, t) Fp(y, 0),
t----0 +

uniformly with respect to y on the set Yl --< 1. Since ] 0, , p,
and the matrix (6.10) has rank N 1, the functions F,, F, satisfy
the hypotheses of Lemma 6.4 given below. According to this lemma, the
equations

F.(y, t) O, .), p + 1,... p,

have solutions

y(t), 0 < < 6" 6" 6’<=
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such that

Set

lira y(t) y(O) O.
t-0+

e(t) tf + ty(t), x(t) x(e(t)),

gp(t) fp(e(t)) J,(x(t)) J(xo), p O, 1, p.

By 6.12 we have

(6.13) lira
g(t)

lira F(y(t), t) Fp(O, O) fcp.
t-0+ t0+

If is on the range 1 =< , =< p’ and J.(Xo) 0, then] < 0 and, by
(6.13),

g(t) J(x(t) < O, 0 < <= 6",
provided 6" is sufficiently small. By continuity this is also true if J(xo) < O,
if 6" is suitably chosen. Since ]0 < 0, the number 6" can be diminished still
further so that

go(t) Jo(x(t)) Jo(xo) < O, 0 < <-_ 6".
Finally, by construction,

0 g(t) J(x(t)) J(xo) J(x(t)), p’ < " <= p.

Hence, if is on the range 0 < _-< 6", the point x(t) satisfies the constraints
(6.4) and has Jo(x(t)) < Jo(xo), contrary to the minimizing property of
x0. The proof of Lemma 6.3 and hence of Theorem 6.1 will be complete
when the following lemma has been established.
LnMMA 6.4. Let G,(y, t), a 1,..., m, be continuous functions on the

domain

(6.14) Yl =< r,

Suppose that

O<=t<__e.

G(y, O) aiyi, a 1,

where the matrix ai) has rank m. Let

N(t) max IG(y, t) G(y, O) on

There are a constant M > 0 and a function
y(t),

such that y (0) 0 and

..,m;i 1,... ,n;

ly[<-_r.

0t=<6;6<= e;
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(6.15)

Moreover
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y(t) <__ MN(t) <= r, G,(y(t), t) O, O<=t<=.

lira y(t) y(O) O.
t-----O+

In order to prove this result select constants a., m -f- 1, n;
j 1, n, such that the matrix

A (ai), i,j 1,..., n,

is nonsingular. Set

G(y, t) ay, rn -4- 1, n.

The enlarged set of functions G,, G, satisfies the hypothesis of the
lemma. Moreover N(t) is unaltered. Select M such that

IA-yl <= ily I.
The function

F(y, t) y A-G(y, t) A-I(G(y, O) G(y, t)

satisfies the relation

IF(y, t) <= MN(t)

On the set (6.14). Select ti such that

r(t) MN(I) <= r, 0 <-_ <=
For each on the range 0 _-< _-< the transformation x F(y, t) maps
the ball ]y] <-_ r(t) into itself. By the fixed-poiit theorem there is a point
y(t) such that

u(t) _-< r(t), (t) F(y(t), t) y(t) A-’G(y(t), t).

We have accordingly

A-’G(y(t), t) O,

and hence also the relations (6.15). Since N(t) is continuous and N(0) 0,
We3 hav(

lira y(t) y(O) O.
t-=0 +

This proves Lemma 6.4 and completes the proof of Theorem 6.1.

7. Proof of Theorem 5.1. The proof of Theorem 5.1 will be based
Theorem 6.1. Using the notations given in 5, let K be the class of all
vectors lc (k, lcv+) of the form
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(7.1)
k Fp(t, xo(t), u, bo) F(t, xo(t), uo(t), bo),

p O, 1, ,p+n,

such that (t, xo(t), u, bo) is in (0, and is on the range < < and
distinct from the points of discontinuity of u0(t). Adjoin to K all vectors
of the form

(7.2a)

where

arbitrary,

(7.2b) Gpb, + Jt Fok sk + Fo, dt,

evaluated along x0 with

OUok(t, xo(t), bo)
Ob

It should be noted that " is the derivative of

G(b) + I F,(t, xo(t), Uo(t, xo(t), b), b) dt,
t

with respect to b t b b0.
We hve the following.
LEMMA 7.1. The class K is a derived set for J, at Xo on e.
Assume for moment that Lemma 7.1 has been established. Then by

Theorem 6.1 there exist multipliers ho 0, , +, not all zero,
such that

(7.3) L() x 0

o the closure of K. Moreoverh 0, 1 p, withh 0incase
J(x0) < 0. Setting F hoF,, we see, by (7.1) nd (7.3), that

F(t, Xo(t), u, bo) , F(t, Xo(t), uo(t), bo),

whemver (t, xo(t), u, bo) is in 0, except possibly for finite number of
values of on e. By continuity considerations it holds at, these
values of Mso. Using (7.2) and (7.3), we see that, long x0,

dG + I {F,s + F.}db 0
3t

holds for 11 db. Since db s rbitrary, the equality must hold. Theorem
5.1, therefore, will be proved when Lemnm 7.1 has been established.
Turning now to the proof of Lemma 7.1, let k0, k, k be N + 1

vectors in K. It is sufficient to consider the case when one of them, sy k0,
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is of the form (7.2) and the remaining are of the form

kjp Fp(tj xo(t), us, bo) F(t xo(t), uo(tj), bo),
(.)

j= 1,...,N.

We can assume that tl =< t2 =< =< t. By virtue of Lemma 4.2 there is
a continuous function U(t,x, b) defined on a t-neighborhood of (tj,
xo(t), bo) such that (t, x, U(t, x, b), b) is in (0,

U(t, xo(t), bo)

and such that its partial derivatives with respect to x and b are continuous
on this set. We may choose independent of j and such that t -k N is on

and does not exceed t. when t t.. Moreover, can be chosen
so that the function Uo(t, x, b) of Lemma 4.1 used in 5 to define J,(x) is
defined on the -neighborhood of the points (t, x, b) on x0. Set

T1 tl, T. t.-k -+-"" -t- -, j 1,...,N,

where e. is restricted to the set

(7.5) 0 =< . __<

where i’ is a positive constant. Let M(e)bethe complement on =< t-<
of the set of nonoverlapping intervals

T. =< T -< T + e., j 1,-.. ,N.

Set

b() b0 + 0h,
where h are the numbers in (7.2) defining /Co and 0 -< e0 _-< ’. If t’ is
sufficiently small the function U(t, x, e) defined by the formulas

U(t, x, ) U(t, x, b(e)), T <= <-_ T - ;j 1, ..., N;
(7.6)

V(t, x, ) Vo(t, x, b(e)), in M(e)),

is well defined on a neighborhood of the points (t, x) on x0. The equations

i(t xilx f(t, x, U(t, x, ), b()), x (b())

have a solution

xi(t, ),

for all e on a set

(7.7) 0 _-< .
provided that i" is taken sufficiently small. The arc

_-< =< 2,

j 0,1,...,N,
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x(e)" x(t, ), u(t, e) U(t, x(t, ), ), b(e), <= <- 2,
is in e and x(O) xo. Moreover, the derivatives xj(t, ) are uniformly
bounded piecewise continuous functions of t. The functions

fo(e) J(x(e)) J(xo),

are continuous and are in fact of class C’ on the set (7.7) We shall show
that at 0 the relation

k-’, j -O,I,’",N,

holds. Setting e- O, j 1, N, we see that
P

f(e) --J,(xo) -- G(b(e)) -- Jr, Fp(t, x(t, ), Uo(t, x(t, ), b(e) ), b(e)) dt.

Taking the derivative with respect to e0 at e0 O, and using the fact that

(7.8) OFp(t, x, Uo(t, x, bo), bo)
0

Ox

along x0, it is seen that, at O,

th k0,
as desired. Setting ei O, i j, j > O, we see that

fp(e) Pp(e) -F Qp(e),

where
tj+j

P(e) [Fp(t, x(t, ), Uj(t, x(t, ), bo), bo) F(t, xo(t), uo(t), b0)] dt,

Qp() f [Fp(t, x(t, ), Uo(t, x(t, ), bo), bo) Fp(t, xo(t), uo(t), b0)] dt.
" M ()

We have, at O,

OP
lim

Pp()
kip, O,

the last equation holding by virtue of (7.8) and the boundedness of the
derivative of x(t, e) with respect to e.. Hence at e 0,

k, p O, 1,...,p

Since fo(e) is of elass C’, its differential at
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It follows that K is a derived set for Jp at x0 on C, as was to be proved.
This completes the proof of Theorem 5.1 and hence also of Theorem 3.1.
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ON SOME DIFFERENTIAL GAMES*

L. S. PONTRYAGIN
This paper briefly reports some work on differential games which has just

been published in [1]. A particular case of such a game is the problem
of the pursuit of one controlled object by another controlled object.
By a controlled object we shall mean one whose state at each instant of

time is defined by a vector (call it x) in a certain vector space, and whose
motion is described by the equation

dx(1) 2 F(x, u), 2
dt"

Here, u is the control parameter, a point in a certain manifold. If the initial
value x0 is given, then, by (1), we can determine the motion of the object,
since the control u is known, that is, u is known as a function of the time.
If x represents the state of a mechanical object, then some of the coordinates
of the vector x represent the position of the object, and the others represent
its velocity.
In the pursuit problem there are two objects, x and y. The motion of

object y is described by the equation

(2) G(y, v),

where v is the control parameter. We shall assume that object x pursues
object y, which is moving away from x. The pursuit is considered terminated
when the geometric coordinates of the objects x and y coincide. The rules
of pursuit are as follows" at each time t, the states x and y of both objects,
and the value of the control parameter v of the pursued object, are assumed
to be known. Our aim is to find a value of u (the control parameter of the
pursuer) at the same time t, such that the pursuit will terminate in the
shortest period of time.

It should be particularly emphasized that the future behavior of the
pursued object is not assumed to be known. In actuality, for certain states
x, y, it will be necessary to use not only the value of the parameter v,
but also the values of a number of its derivatives. This means that we are

* Received by the editors October 19, 1964. Presented at the Symposium on the
Mathematical Theory of Optimal Control, held at the University of Michigan,
October 5-7, 1964. The original manuscript of this paper in Russian was translated
into English by A. Naparstek.

Translated and printed for this Journal under a grant-in-aid by the National
Science Foundation.

V. A. Steklov Mathematics Institute, Academy of Sciences of the USSR, Mos-
cow, USSR, and Brown University, Providence, Rhode Island.
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using some knowledge about the future behavior of object y. This premise
may be given a sensible physical meaning, which I shall not dwell on here.
We assume that the parameters u and v belong to analytic manifolds,

that the functions in (1) and (2) are analytic, and that the function v(t)
is piecewise analytic. It turns out that the function u(t) obtained under
these conditions is piecewise analytic as well.

In constructing a generM theory, we had the following example as a
model for it. In a Euclidean space E of arbitrary dimension, two points,
and n, undergo a motion as described by the equations

(3) + u,

(4) + =.

Here a, , p, z are positive numbers, and u and v are control vectors in E,
which satisfy the conditions

Thus, each of the points moves under the action of friction and a force of
constant magnitude whose direction may vary.

In order to bring (3) and (4) to the form (1) and (2), it is necessary to
set

x (, ), Y (7, ).

The pursuit is said to be terminated when 7.
A general theory should answer the following two questions. Under what

conditions can the pursuit be automatically terminated? What is the
length of time required for its termination?

It has been found that the pursuit can definitely be terminated if the
inequalities

(5) =, ->-

hold. The time needed to end the pursuit, for a given initial position of
the obiects x, y, can be found to be the smallest positive root of a certain
transcendental equation.
To simplify the calculations, we couple x and y into the single obiect

z (x, y) and somewhat generalize the problem.
Let R denote n-dimensionM Euclidean space. There is only one controlled

obiect, whose state is defined by the vector z in Rn, and whose motion is
described by the equation

(6) Z(z, u, v).

Here, u and v are the control parameters, which are points on analytic
manifolds, the control v(t) is assumed to be piecewise analytic, and Z is an
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analytic function of all its arguments. In addition, we shall assume that

(7) Z(z, u, v) X(z, u) + Y(z, v).

In the space Rn, there is given an/-dimensional analytic manifold M*, where
< n. The game is considered to be terminated when the point z reaches

the manifold M*. The rules of the game are as follows. At each time t, the
position z of the object and the control v are assumed to be known. Our
aim is to find a value for the control u, at the same time t, that will terminate
the game in the shortest possible time.

Actually, for certain values of z, it will be necessary to use not only the
value of the parameter v itself, but Mso the vMues of a number of its deriva-
tives with respect to t, at the same instant of time.
One can attempt to solve this problem by Bellman’s method of dynamic

programming. In fact, it can be solved by this method if the corresponding
Bellman function is single-valued and has continuous derivatives. However,
the Bellman function for this problem is, as a rule, multiple-vMued; it has
branches which are analogous to the branches of an analytic function.
For example, this holds true for the problem described by (3) and (4).
We solve this problem with the help of the maximum principle.
Along with the vector z, we introduce an auxiliary vector in R and

consider the function

(8) c(z, , u, v) .Z(z, u, v),

where on the right we have the scalar product of the vectors and Z.
As the function is a Hamiltonian function, we consider the Hamiltonian
system of equations

(9) dz OC d OC
i= 1 2,... n

dT Oi dr OZ

This system is not complete, since, in addition to the vectors z and
there are also the parameters u and v. We shall complete this system in a
manner anMogous to that used in the maximum principle. By virtue of
(7), we have

(10) c(z, , u, v) c(z, , u) + c(z, , v),
in which

(11) l(z, , u) b.X(z, u), 3C2(z, b, v) b.Y(z, v).
Let M(z, b) be the maximum of the function 3C1(z, , u) for fixed values
of z and @, and let M2(z, b) be the minimum of the function (z, , v)
for fixed values of z and . The additional relations for system (9) are the
following:

(12) 3C(z,
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The system (9), (12) obtained in this manner is, generally speaking,
complete. We shall assume that this system has the unique solution

(13) z z(r), (r), u u(r), v v(r),

defined for ll wlues r =< 0, with the initial conditions

(4) z(O) z0, (o) 0.
We regard as admissible only those initial conditions for which z0

_
Mz,

and for which 0 is a unit vector (10[ 1) orthogonal to the manifold
M at the point z0. The manifold N, consisting of all admissible pairs
(z0, 0) of initial values, obviously has dimension n 1. Each solution
(13), with admissible initial values, that we have been considering de-
pends, in reality, not only on the time r, but also on the initial value ,
so that we have

(1,) z z(, ) (, ),
where < 0, N.
The set of all pairs (r, ) s, where < 0 and N, forms an n-dimen-

sional nnalytic manifold S. The function w (see (15)) defines an analytic
mpping of the n-dimensional manifold S into the n-dimensional Euclidean
space Rn. We denote the Jacobian at a point s S of this mapping by

(16) (s) det 0___.
Os

The mapping is, as a rule, not one-to-one. In particular, it is not one-
to-one for the example (3), (4). Thus, the inverse function o-l(z) is not
single-valued. If, from the relation 0-l(z) s (r, ), one defines r as a
function of z,

(z),

then we obtain the Bellman function. If it happens that the mapping is
one-to-one and that the Jacobian (s) is everywhere different from zero,
then the Bellman function r(z) is single-valued, and with its help the
problem can be solved by the method of dynamic programming.
The following theorem has been proved by the author under certain

assumptions concerning the game which are not here formulated.
TEOREM. Let be the initial state of the object and let , ) be that

pre-image of the point under the mapping for which " has the minimal
alue. Then, no matter how player v conducts himself, player u, by correct
play, will certainly be able to terminate the game in a time not exceeding I.
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SOME GEOMETRICAL ASPECTS OF OPTIMAL PROCESSES*

G. LEITMANN
Introduction. This paper is an account of preliminary results about some

geometrical aspects of optimal processes. Related investigations into the
geometry of optimally controlled systems can be found in the work of
Halkin Ill, Roxin [2], and Blaquiere [3].
Under the assumptions that the cost is additive and that the minimum

value of the cost is a continuous function of the initial state, the existence
of so-called limiting surfaces in cost-augmented state space is exhibited.
Each member of this one-parameter family of surfaces is the locus of opti-
mal trajectories, and bounds the region containing all trajectories which
emanate from points on the surface. The existence of limiting surfaces is
deduced without restriction to a particular system and cost functional.
For systems described by the usual set of differential state equations and

an integral cost functional, further geometrical properties of limiting sur-
faces are found. While it is not the primary purpose of this investigation to
give another derivation of the maximum principle [4], that principle is
shown to be a consequence of the geometry of limiting surfaces. Further-
more, for regular optimal trajectories the connection with dynamic pro-
gramming [5] is exhibited.

1. lotation and assumptions. Consider a system characterized by n
x,. The slate of the system may be thought of as avariables xl, x2,

point

in n-dimensional Euclidean space E.
At the outset of this discussion, we shall not specify the rules which

govern the behavior of the system. Rather we shall assume that these
rules are subject to some degree of change, and we shall make certain as-
sumptions concerning the system’s behavior.

Associated with any one of the given set of rules is a process which changes
the state of the system from some point, , along u path., 7, in E". In other
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1965. Presented at the Symposium on the Mathematical Theory of Optimal Control,
held at.the University of Michigan, October 5-7, 1964.

Department of Mechanical Engineering, Division of Applied Mechanics, Uni-
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words, the state variables, x., j 1, 2, ..., n, are functions of time,
x.(t). We shall assume that these paths are continuous, i.e., that the func-
tions x(t) are continuous on some time interval [to, tl]. In the ensuing
discussion we shall be concerned with the paths which can be generated
by making all permissible changes in the rules which govern the dynamical
behavior of the system.

Let p denote a path which emanates from a point at some time and
reaches a prescribed terminal point 1 at some time tl neither the value of
t, nor that of t, is specified. Let denote a path which starts at point
but does not reach 1 in finite time; the terminal point of such a path will
be denoted by 1.
Next consider a rule, or functional, which assigns a unique number to

each process. We shall assume that this number, the value of the functional
or the cost of the process, depends on the path, p or/, and hence on the
initial point, , and on the terminal point, or 1. We shall denote the cost
by V(; , p) or V(; , i5), respectively.
We shall assume further that there exist optimal rules, and we shall say

that rule is optimal if it results in a path, p*, from to , for which the
cost takes on its minimum value. In other words,

(1) V(; 1, p*) =< V(; , p), /rules.

Given a functional, and end states g and g, the optimal rule and the
corresponding optimal path need not be unique; many different rules may
be optimal. However, it follows from definition (1) that the minimum
value of the functional is unique; therefore, we shall write

v*(; ) L v(; 1, p,).

In general, paths from to are either optimal or nonoptimal; the latter
will be denoted by p’, and so

Next, let us consider two subsets of state space E:
(i) the set E of all points g from which the prescribed terminal point
can be reached in finite time;
(ii) the set E* of all points from which can be reached along an opti-
mal path.
More concisely, we have

In order to void cumbersone notation, we shll employ the same symbol for
function of time nd for its vlue t given time. The intended menning should

be evident from the context in which the symbol is used.
The results cn be extended readily to include the cse of prescribed end mni-

folds nd of prescribed end times.
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E {’=lr p},

E* {’3 P*}.
First of all, it is clear that E* c E. Secondly, neither E nor E* need be
all of state space En. Thus, these sets may possess boundary points. We
shall now make some assumptions"

(i) At every point of boundary OE*, there exists a sphere with center

at and radius r > 0 such that every concentric sphere with radius p,
0 < p <: r, contains interior points (with respect to E") of E*.

(ii) V*(; 1) is defined and continuous on E*.
(iii) Partial derivatives 0V*(; ;)/Ox, j 1, 2, ..., n, may have

at most jump or infinite discontinuities.
(iv) The value of the functional obeys the additivity property

/i P, where p pldp,

lim V(i; g, p) O.

2. Augmented state space and trajectories. Let us now introduce another
variable, x0, and consider an augmented state vector

which represents a point in (n -t- 1)-dimensional Euclidean space E+1.
Next we shall define trajectories, F or , in E+ by

F" x0i V(g;,p) C, where pC cp,
(3) . Xo nL V(i; l, p) C, where 5 c/.

Thus, a trajectory F, or , is a curve in En+l traced by a point x whose
projection on E moves on a path p, or/5, respectively.

This assumption precludes the possibility of portions of E* consisting only of
boundary points, e.g., isolated optimal paths.

It can be shown that this assumption is valid for systems of the kind considered
subsequently.

Here, is regarded as the terminal point of path p. Subsequently, we shall
restrict the analysis to functionals, namely, integrals, for which the additivity
property is evidently valid.
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The terminal point x of a trajectory F lies on a line X0, which is parallel
to the x0-axis and intersects E in the prescribed terminal point 1. We shall
writeF F’ifp p,andF ifp p.

3. Limiting surfaces Z and optimal isocost surfaces S. In view of the
assumption that V*(g; 1) is defined and continuous on E*, we may define
an n-dimensional surface

" X0 "q- V*(; i) C,

Such a surface is composed of a single sheet, since V*(; ) is a single-
valued function of . Since partial derivatives OV*(; )/Ox, j 1,
2, -.., n, may have jump or infinite discontinuities, a Z surface is piece-
wise regular.
The function

Xo C- V*
corresponding to a given value of C vanishes on an (n 1)-dimensional
surface

(5) s. c.
As the value of C varies, (5) and (4) define two one-parameter families

of surfaces: S surfaces in E and 2; surfaces in E’+’, which we shall call
optimal isocost surfaces and limiting surfaces, respectively. The first of
these names is a consequence of the definitions of S and V*(g; gl); namely,
every point on a given S surface corresponds to the same minimum value
of the functional. The reason for adopting the second name will become
obvious in the next section.

4. Some properties of Z surfaces. We shall now state some properties of
Z surfaces. First among these is the one embodied in the following lemma.
LEMMA 1. Any optimal trajectory F* which intersects line Xo at a point

x lies entirely in the Z surface through x.
This lemma follows at once from the definition (1) of optimality to-

gether with additivity property (2).
In view of definition (4) of 2 surfaces, the members of the one-parameter

family of these surfaces may be deduced from one another by translation
parallel to the x0-axis. Furthermore, these surfaces are ordered along the
xo-axis in the same way as the values of parameter C. Thus, one and only
one Z surface passes through a given point x in E+. From this property,
together with Lemma 1, we have"
LEMMA 2. Any optimal trajectory F* with a point on a given surface lies

A regular point of a surface is one where the tangent plane of the surface is
defined.
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entirely on that surface; i.e., the surfaces are the loci of all optimal tra-
je.ctories.

Next let us introduce some more nomenclature. A given Z surface sepa-
rates the domain in which it is defined in En+l--whose projection on E
is E*--into two open regions with respect to that 2: surface. We shall
denote these regions by AlE ("above" 2:) and B/2: ("below" 2:), re-
spectively. For a given value of , the terms "above" and "below," re-
spectively, refer to larger and smaller values of x0 than that of 2:. A point
x A,/2: will be called an A-point relative to 2:, and a point x B/
B-point relative to Z.
From the definitions (3) and (4), respectively, of a nonoptimal tra-

jectory P’ and a 2: surface, together with Lemma 2, there follows"
LEMMA 3. There exists no trajectory which starts on a given Z su:face and

intersects line Xo at a B-point relative lo that surface.
Lemmas 2 and 3 lead quite readily to the following theorem and corol-

lary.
THEOREM 1. A trajectory (optimal or nonoptimal) whose initial point

belongs to a given 2: surface cannot have a B-point relative to that Z surface.
COROLLARY 1.1. A trajectory whose initial point is an A-point relative to

a given surface cannot have a B-point relative to that 2: surface, nor, indeed,
a point in it.
Theorem 1 embodies the limiting nature of the 2 surfaces; namely, a

given surface bounds the domain of all trajectories which emanate from
points on that surface. This property of 2: surfaces is fundamental in the
subsequent discussion of optimal processes.
Thus far, we have not specified the rules which govern the behavior of

the system. To deduce additional results, we shall now consider specific
rules.

5. State equations and control. Henceforth, we shall restrict the analysis
to systems for which the state variables satisfy state equations

(6) 5c f(x ,x,, ul, u,), j 1,2, n,

where u, u are control variables. The control vector

defines a point in m-dimensional Euclidean space E’. Given he control
as a funegion of gime, u u(t), to _-< -< t, equagions (6) eonsgiguge a
seg of rules which govern ghe behavior of ghe system during interval Its, t].
We shall resgrieg he values of ghe eongrol o a prescribed se U, i.e.,
The analysis is easily extended to include the case of state-dependent set U.
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u U c E’. Furthermore, we shall assume that the function u(t) is
defined and piecewise continuous on some interval [to, tl]. A control satis-
fying these conditions will be termed admissible.

Concerning state equations (6), we shall assume that fi(g, u) and
Ofi(g, u)/0x, c, j 1, 2, n, are defined and continuous on E U.
Consequently, for given admissible control u(t), to _-< _-< tl, and given
initial conditions g(t0) g0, there exists a unique continuous solution
g(t) on [to, t].
Note here that the interval [to, tl] is not specified. Rather, the initial

state g0 and the terminal state are prescribed. The subsequent results
are readily extendable to include consideration of specified end times as
well as of nonautonomous state equations, and of motion between end
manifolds.
Next we shall consider a functional in integral form

(7) fo(xl(t), "’’, Xn(t), ul(t), "’, u,(t) dt,

where u(t) is a control which transfers the system from initial state g0
either to prescribed terminal state or to some other terminM state 1
in time tl to.

Trajectories F or are defined by

xo(t) Jr- fo(x(s), ".’, x(s), u(s), ..., u(s) ds C,

so that

(s) 0 fo(x, ..., x, u, ..., u,),

where we take xo(to) 0, since the initial value of x0 is of no consequence
in determining the value of functional (7). Concerning f0(g, u) and
Ofo(, u)/Ox, j 1, 2,..., n, we shall make the same assumptions of
continuity as those made earlier for the functions f-(, u) and their partial
derivatives.

Equations (6) and (8) constitute a set of n -F 1 differential equations
whose solutions define trajectories in En+. We shall combine them into
a single vector equation

(9) f(x, u),
where

f(x, u)
LA(, u)

If u(t) is discontinuous at t, we shall take u(t) u(t 0). Also, without
loss of generality, we shall assume u(t) to be continuous at to and t, i.e., u(t0)

u(to - 0) and u(t) u(t 0).
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An optimal control u*(t), to =< -< t, results in transfer of the system
from t to 1, while rendering the minimum value of x0 at time t. The
corresponding optimal solution of trajectory equations (9) will be denoted
by x*(t).

6. A linear transformation and tangent planes. Consider the homoge-
neous linear differential equations,

(10) Oft(x, u*(t)) Ix=. v, j 0, 1, ..-,n,
a=o OXa (t)

whose solution, for given initial conditions (’) he, t0 t, de-
fines an (n + 1)-dimensional vector n(I), t’ tl. Equations (10)
define a nonsingular linear transformation, and hence a linear operator
A (’, t) such that

) () A(, ).

Nx Consider optimal r]eCtory *, nr y onrol
t0 , nd let x*({) e regular, interior point of limitin surfa
Z. A neighborhood in of point x*(l’) is defined by

(x*(t’)) x’x x(’, )}

and

() x(t’, ) x*(t’) + ,’ + o() ,
where n’ belongs to the tngent plane T(x*(t’)) of 5(x*(t’))--nd hence
of --t x*({), where e is prmeter of first order smallness, nd where
lim,0 o()fle 0.
We shll be interested in the transform of A(x*(/’)) long F*, i.e., in

6(x*(t")) Z {x’x x(t", )}, t’ t" t,

where x(t, e) is the solution of trajectory equations (9) with control
u*(t), t0 ta, nd initial conditions (12). In other words,

(13) x(l", x* t" t" t") + .( )+o(

where

ttt tn(t") A(t,

and o(t" " t’ t"e)/e tends to zero uniformly with respect to t,
as e0.
From the properties of the linear transformation A (t’, t) and from (13),

it follows that

t" x*T(x*(t")) A(t, )T( ())

where T(x*(t") is the tangent plane of A(x* t" at x* (t").



60 G. LEITMANN

Recall now that points x(t", e) belong to trajectories whose initial
points lie in the limiting surface 2;. Thus, provided x*(t’) is n interior
point of 2;, it follows from Theorem 1 that there exists n a > 0 such that
points x(t", e) belong to region AlE [J for 11 el < a. If, in ddition,
x*(t") is regular point of 2;, then we conclude that A(x*(t")) is tngent
to 2 t x*(t" ). Thus we hve"
LEMMA 4. If X*(t’) and x* {’), t" >= t’, of optimal trajectory F* on limiting

surface are regular inlerior points of , then

X*T(x*(t")) A(t, )T( ())

where T(x*(t) denotes the tangent plane of Y, at x* (t).

7. Regular interior points of a limiting surface. Suppose that x’ is a
regular interior point of limiting surface 2;. Let n(x’) denote the unit vector
normal to 2; at x’ and directed into region B/Z, so that n0(x’) =< 0.
As consequence of Theorem 1, we have

(14) n(x’).f(x’, u) =< 0, yu U.

Furthermore, if x’ x*(t’) of optimal tra,jectory F* generated by control
u*(t), t0 =< =< t, it follows from Lemm 2 that

(1..5) n(x*(t’)).f(x*(t’), u*(t’)) 0.

8. The maximum principle and the functional equation for regular opti-
mal trajectories. Suppose that optimM trajectory F* is regular, i.e., all
points of F* re regular interior points of the E surface on which F* lies.

Consider the tngent plane T(x) of 2; t the initial point x*(t0) x
of F*. According to Lemm 4,

T(x*(/)) A(to, t)T(x),
where T(x*(t)) is the tngent plane of Z t x*(t). In other words, if ny
vector n . T(x) is transformed ccording to

.() A (t0, t).,
then

(16) n(t) T(x*(/)).
The equations djoint to variational equations (10) re

(17) X -- Of(x,u*(t)) , j O, 1, ,,n.
a=0 OXj x=x* (t)

For given initial condition (t0) 0, the solution ,(t) of (17) is unique
nd continuous on [to, t]. It follows from (10) nd (17) that

(18) ,(t).n(t) eonst., to _-< ft.
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Let us now choose the following initial conditions"

(i) .(to) ,,o T(xO);
(ii) (to) .o +/- T(xo) and directed into B/2; i.e.,
with n(x), so that Xo(to) =% O.
Consequently, we have

(2O)

and

(21)

for all on

,0 is codirectional

and hence, by (18), that

(19) .(t).n(t) 0, l0 =<- 6.

In view of (16) and (19), we conclude that vectors a(t) and n(x*(t))
are codirectional on [re, tl]. It follows from (14) and (15) that

(t).f(x*(t), u) O, Vu U,

.(t).f(x*(t), u*(t)) 0

[to, t,].
Furthermore, since the right-hand side of adjoint equations (17) is

independent of x0, it follows that

(22) h0(t) const. =< 0

Conditions (20)-(22) embody the maxi.mmn principle of Pontryagin
for the case of regular optimal trajectories.

Let us recall now the equation of the Y, surfaces, namely,

(x) V*=xo+ (; =C,
and let us consider grad (x). This vector is defined at a point x*(t’) of
optimal trajectory F* on limiting surface ;, provided’
(i) x*(t’) is a regular interior point of E, and

(ii) OV*(g; gl)
j 1, 2, ..., n, are finite.

(Xj x=x*

If conditions (i) and (ii) are satisfied, then grad (x*(t’)) and .(t’)
are collinear. Furthermore, their projections on the x0-axis are constant.
Hence, we have

(23) a(t’) h0(t’) grad (I,(x*(t’)).
Since k0(t’) # 0 at a point where condition (ii) is met, we may put

M(t) = -1. Thus, if F* is regular and condition (ii) is met at one poin
of P*, it follows from (20)-(22) with (23) that

min fo(x*(t) u) + f(x*(t) u) OV*(; gl)
0

uU jl OXj x----x* (t)
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for all [to, t]. This equation is one version of Bellman’s functional
equation.

9. llonregular interior points of a limiting surface. Thus far we have
restricted the discussion to regular interior points of X surfaces. Next we
shall consider nonregulr interior points of limiting surfaces.

In view of our assumptions on V*(; ) nd its partial derivatives,
Z surface is piecewise regular; i.e., it may consist of intersecting subsurfaces
whose interior points nre regulnr points of Z. Suppose that subsurfaces
Z, 1, 2, , intersect in mnifold

M= N;.N... N,
where superscript d denotes the dimension of the intersection manifold.
Also, let T0(x) denote the tangent plane of 2; 0 at point x.

For the ensuing discussion, we shall assume that manifold Me is non-
degenerate; i.e., at a point x Me.
(i) all tangent planes T0(x) possess linearly independent normals, if
,__<. n-- 1;and
(ii) n + 1 of the tngent planes T0(x) possess linearly independent
normals, if , n + 1.
One consequence of the assumed nondegeneracy is that

d n+ 1 - for , =< n+ 1,

d=0 for , _-> n - 1.

In other words, for _>- n + 1 the intersection manifold Md reduces to a
point in E+1.
Next we consider the n-dimensional surface $(x), composed of the

portion of [.J= T0(x) which adheres to at point x. Since 2; is single-
sheeted, so is $(x). Hence, $(x) divides E+1 into two open regions. We
shall characterize these regions by means of rays L_ and L+ at x. L_ and
L+ are parallel to the x0-axis; L_ points into the negative x0 direction, and
L+ into the positive x0 direction. The region containing L_ will be denoted
by B/$(x), the other by A/$(x). If L_ lies in $(x), we utilize L+ in a
similar fashion. If both L_ and L+ lie in $(x), we define these regions at
point x + Ax E 2;, and let Axl -- 0 along a continuous curve in ; this
can always be done in view of the continuity of V*(; 1), which rules
out the possibility of every such curve belonging to an x0-cylindrical sheet.
Of course, the definition of the surface $(x) is valid at a regular point

x of 2;. In fact, in that case, the surface $(x) reduces to the tangent plane
T(x) of

Let us consider a vector ’ at the point x*(t’) of optimal trajectory F*,
and its transform " A(t’, t")n’ at x*(t"), t" > t’. Then, by means of
Corollary 1.1, we can deduce the next two lemmas.
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LEMMA 5. /f

.’ [A/s(x*(t’) )] t3 s(x*(t’)),
then

4’ [A/s(x*(t"))] U s(x*(t")).
LEMMA 6. /f

." < [B/$(x*(t"))] O $(x*(t")),
lhen

.’ [B/S(x*(t’))] U $(x*(t’)).
A direct consequence of these lemmas is the following.
LEMMA 7. A point x*(t’), to < t’ tl, of an optimal trajectory F* cannot

be an isolated nonregular point, i.e., one such that x*(t’ 4- At) are regular
points of as At -+ O.

10. Attractive and repulsive manifolds. If x is a nonregular interior point
of 2;, i.e., x Md, d < n, then there exist three possibilities"
(i) B/$(x) is separable;
(it) A/8(x) is separable;
(iii) neither B/8(x) nor A/8(x) is separable.
Here we shall restrict the discussion, to cases (i) and (it) only. We shall
denote the separable region, an open cone, by et(x) and the corresponding
separating hyperplane by 3(x).

Of course, at a regular interior point x of 2;, both A/8(x) and B/$(x)
are separable with $(x) --- T(x) --- 3(x). We shall distinguish between
nonregular interior points of Y,, where et(x) A/8(x)and t(x) B/8(x),
respectively. By means of Lemnms 5 and 6 one can establish"
LEMMA 8. An optimal trajectory F* cannot join nonregular interior point

* t’ X* 1" ’t
x x and x" > t’, if et(x) B/8(x’) and et(x")

A/$(x").
,If, in addition, there exists a separating hyperplane different from every

one of the tangent planes T(x), 1, 2, % we have"
LEMMA 9. An optimal trajectory F* cannot join points x’ x*(t’) and

" X* t" l."x ), > t, if x is a nonregular interior point where
I!e,(x’) - B/8(x’) and x ,s a regular interior point; or [ x is a regular

interior point and x" is a nonregular interior point where e,(x") A/S(x" ).
Consequently, we shall employ the terms attractive manifold and re-

pulsive manifold, if x Ma, d < n, and et(x) B/8(x) or e,(x) A/$(x),
respectively.

It can be shown that an optimal trajectory F* cannot join points x*(
and x*(t"), t" > l’, belonging to attractive manifolds of dimensions
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n - 1 --,t andn -t- 1 -,", respectively, unless ,’ =< ,". The converse
result holds, if both points belong to repulsive manifolds.

11. Convex cone of f vectors. We shall define the unit normal n(x) of
subsurface 2 at the point x Md by considering the normal n(x -t- Ax)
at a regular interior point of :, and letting Axl -- 0 along a continuous
curve in
From (14), together with the continuity of f(x, u) for given u, it follows

that

(24) n(x).f(x, u) =< 0, Vu U, 1, 2, ,.
Let us recall now that the surface 8(x) is generated by vectors t tangent

to 2 at x. We shall denote the surface generated by vectors -t by 8_(x),
and the corresponding separable open cone by t-- (x). Condition (24),
together with the properties of intersection manifolds, leads to the following.
LEMMA 10. If X belongs to an attractive manifold, then

f(x, 11) et_(x) [J $_(x), Vu U.

If x belongs to a repulsive manifold, then

f(x, u) e,(x) U s(x), Vu U.

Let us now define the ,-dimensional convex cone ((x) of vectors
N(x) _,= an(x), where a,/ 1, 2, / =< n, re nonnegative
constants, not all of which are zero. From condition (24), it follows at
once that

(25) N(x).f(x, u) =< 0, Vu

Furthermore, since the hyperplane T("+--s) (x) l= T0(x) is tangent
to 2 t x, it follows from (15) that

(26) N(x*(t’)).f(x*(t’), u*(t’)) 0, VN(x*(t’)) e(x*(t’)),
for all t’ [to, tl].

12. Boundary points of 2. If subset E* of E possesses a boundary aE*,
then the domain on which limiting surfaces are defined in En+l is bounded
by an x0-cylindrical surface, (.

We shall assume here that E* E; namely, prescribed terminal point
1 cannot be reached from a point from which it cannot be reached along
an optimal path.

Let I/( denote the open set of poi.ts interior to the domain of defini-
tion of : surfaces, and let 0/( denote the open set of points exterior to
that domain. Then we have at once the following results.
LEMM 11. If x(t’) and x(t’t), ’ > t’, are points of a trajectory, and

x(t’) 0/, then x(t’) I/O.
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LEMMA 12. If point x*(t’) of optimal trajectory F* belongs to boundary
5, then F* lies in 6t for all t, t’ <-_ tl

If x’ is a regular point of boundary (B, and n(x’) denotes the unit vector
normal to (R) at x’ n.d directed into region I/6, then. it follows from Lemma
11 that

(27) n(x’).f(x’, u) =<. 0, Vu U.

And, as consequence of Lemma 12, we hve

(28) n(x*(t’)).f(x*(t’), u*(t’)) 0.

It is noteworthy that the slient properties of the boundary surface (
correspond to those of limiting surface 2; provided we ivoke the corre-
spondence of regions 0/( nd I/( to AlE nd B/Z, respectively. In
particular, we note theft
(i) Lemm 11 corresponds to Corollary 1.1;
(it) conditions (27) nd (28) correspond to (14) and (15), respectively;
(iii) Lemm 12 corresponds to Lemma 2.
In fct, if for given Z surface, we disregard the points of I/( tJ (

which belong to AlE, the intersection Z ( hs the salient features of
attractive manifold.

13. The maximum principle. Upon invoking the vrious lemms stated
in the preceding sections, it is agai possible to rrive t Pontrygin’s
mximum principle. Now, however, we no longer hve an djoint vector
X(t) which is normal to a 2; surface, but rther one which is normal to a
separating hyperplane 3(x) of the separable cone et(x). Of course, t a
regular point of Z this distinction disappears. Nonetheless, it is an im-
portant distinction at nonregulr points, since it invalidates relation (23)
between X (t) nd grd (x*(t) ).
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A simple example which demonstrates the inapplicability of (23) t nonregulr
points is the well-known problem of time optimal transfer from (x,, x) to (0, 0)
for 2 x, 2 u, ul =< 1.
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ON A CERTAIN PROBLEM FOR PARABOLIC DIFFERENTIAL
EQUATIONS CONNECTED WITH OPTIMAL lURSUIT*

E. F. MISHCHENKOI

Let there be in n-dimensionM space two moving points, one of which is
controlled according to the law

(1) f(x, u),

where u is the control parameter, u -< 1, and the other is a random point
of the Markov type.
We denote by p(z, x, r, y) the probability density of the random point

being at time r in the position y if at time z it is in the position x.
Suppose that moving together with z is a small neighborhood 2; of z,

where :Y, is bounded by a piecewise-smooth surface, for example, a sphere
S of radius and center at the point z.

It is required to calculate the probability of the following event" that in
the time interval z <- <= r the random point will be covered by the
neighborhood 2; that is, the random point crosses the surface S.

Since the probability (z, x, r) which is sought is a functional of the
control u(t), the problem reduces to an application of the maximum
principle as soon as this functional has been calculated..

It is clear, however, that in certain instances there may be interest in
the problem of the pursuit of the random point by the controlled point.
in the sense that only a certain number of the coordinates of the controlled
point come close to the corresponding coordinates of the random point.
Thus, we arrive at the natural generalization of the above-formulated
problem, namely"

Suppose that in the space (z, z, zn) there moves a/c-dimensional
manifold M, changing its form and position according to the law

(2) M M..

(We shall consider the manifold M to be twice continuously differentiable).
Suppose also that moving together with M is its n-dimensional e-neighbor-
hood U(M). It is required to calculate the probability of the following

Received by the editors December 16, 1964. Presented at the Symposium on the
Mathematical Theory of Optimal Control, held at the University of Michigan,
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Science Foundation.

V. A. Steklov Mathematics Institute, Academy of Sciences of the USSR, Mos-
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event" that the random Markov point falls in the neighborhood U(M) in
the time interval _<_ s <__ r.

As A. N. Kohnogorov has proved, the function p(, x, r, y) satisfies
the parabolic differential equation

(a) - + a(, x) b o
0 ,= + ’ x) 0.

It is easy to see that the probability (, x, r) being sought also stisfies
the same differential equation, where (r, x, r) 0, nd (a, x, r) 1
whenever x belongs to the boundary U(M) of the manifold M. We
denote this boundary by V(M).

Thus, we need to solve the differential equation

(4) 0 + a(z, x) 00 b0 .= + (’ ) 0

under t.he conditions

() (, x, ) 0,
()

(b) (, x, )I(.,) .
It ppers that the result of solving this equation up to n accuracy greter
thn high order of my be written in the form of n explicit formula.
In order to do this, severM helpful constructions re necessary.
Through ech point m of the nmnifold M we drw the tngent plane

P(m). Then we choose n linearly independent vectors e, e, ..., e,
leaving the point m such that
() e, e, e re contained in P(M), nd
(b) in the coordinate system , , ’, referring to the bsis e, e,

e, the differential operator

OxOx

my be written in the form of the Laplace operator

02E (0)"
We denote by Q(m) the subspce spanned by the vectors e+, ..., en
which is ssocited with P(m). The collection of points in the subspce
Q(m) which re separated (in the metric of R) from the plane P(m) by

distance is n ellipsoid E. Let its equation in the coordinates be

(6) c,i e.
i,j=l
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It is obvious that we ehtv

(7) V(M) fm x M
with an accuracy greater than a high order of e. Further, we denote by
w((k+l, (n) the harmonic function vanishing as (I --> and equal to

-,,one on the ellipsoid Em, distinguished in Q(m.) by the equation

i,j=l

It is known that w can be represented in the form

where (/--1)2 + + (n)2, a()7,s) is uniquely defined by the dimen-
sions of the ellipsoid E’ and r is the double layer potential created by
E:, at the point (+, -.., ). Upon differentiating the right and left
side of (8) in the p direction and after taking the ]n_tegrl over the surface
E:, we easily see that

0W , 4(9) L-ffp-pdE,
F (n--k2 l)

a(m)- fl(m),

in which I’ is Euler’s gamma function.
We tail IIOW formulate the following proposition:
The solution of (4) under the conditions (5) can be represented in the form

(10) qb(r, x, r) e’-- ds p((r, x, s, m.)(m) dM - o((r, x, r, e),

where o has a magnitude of order n-k- for any point x which is separated
from the manifold M, by a finite distance independent of e.

In (10) the interior integration is carried out over the entire manifold
M, in which the element of volume is indexed at each point by the reference
frame et, e, e. It is easy to see that this definition of volume depends
only on the coefficients a of (4) and does not depend on the admissible
arbitrariness in the choice of the reference frame e, e.
The schema of proof of the formulated proposition follows.
The function

11 (, x, ’) e-- ds p r, x, s, m, (n,) dM,

is the solution of (4) in the exterior of the manifold M and satisfies (5a).
But it does not satisfy the boundary condition (5b), the second of condi-
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tions (5). It appears, however, that one can construct an n-dimensional
elliptical neighborhood of the manifold M, on the boundary of which the
values of the solutions (, z, r) and (, z, r) actually coincide. Let us
construct this neighborhood.

For this, we shall take in each subspace Q(m) the ellipsoid E* distin-
guished by the equation

(12)
and we shall set

(13) V*(M) *

The surface V* is, indeed, the boundary of the required neighborhood of
the manifold Me. We emphasize that, generally speaking, V* does not
coincide with V.
Now, by using known asymptotic expansions for the function p(, z, s, y)

and by performing elementary, although tedious, calculations, we find
that for z0 V* (Me),
(14) (I)(0", X0, T) OZ())?0z) -’[- 01(0", 0, T, e),

where (21 has the order 0(1) for r z <= e, and vanishes for --> 0 when
r > e. Here, m0 denotes the projection of the point x0 onto the manifold
M in the direction determined by Q(m).
On the other hand, by using methods which are natural analogues of the

method in [2], we can write down the solution (z, x, r) in a certain special
form, in which it is immediately possible to observe that

(15) (, x0, ) (n0) + (, x0, , ),

and moreover, (2 has the same asymptotic character with respect to as

does (21 Upon equating relations (14) and (15), it is not difficult to extract
(.0).
In the case when the manifold M is simply a point z(s), and Z its

spherical neighborhood of radius e, (10) turns out much simpler. Namely,

(16) p(, x, s, z(s))(s) cs + o(-:),

where

f ow(s, ) dr,.(s)

Here, A. denotes the linear transformation As which converts the
differential form

a (s, z(s))
O

, OdO
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to the Laplace operation, and w(s, .) is the harmonic function satisfying
the conditions

w(s, ) 1, A,Z,

0,

In conclusion, we note that in case n ] 2, formulas (10) and (16)
are no longer valid; but instead of these, the following two formulas,
respectively, are valid:

p(z, x, s, m.) dM.,

(z, x, ) log
p(z, x, s, z(s)) ds.
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A DOUBLY SINGULAR PROBLEM IN OPTIMAL
INTERPLANETARY GUIDANCE*

J. V. BREAKWELLJ"
The problem we wish tJo describe is a doubly singular problem, i.e., a

problem singular i 2 controls, which has recently confronted Frank Tung
and the author in connection with "minimum effort" interplanetary
guidance.
The problem has the followig background. A vehicle lauched from a

low-altitude earth orbit towards a planet will require several trajectory
corrections to insure arrival in the close vicinity of the planet. It is not
difficult to schedule several correction times so that the total amount of
fuel necessary for implementing these corrections is but a small fraction of
the fuel necessary to launch the vehicle away from the earth orbit. This is
true, at any rate, if launching accuracy comes up to present-day standards,
and if subsequent measurements for trajectory determination, which we
shall suppose are made by on-board optical instruments, approach the
accuracy of engineering estimates thereof. It is possible [1], [2], indeed, to
optimize the number and timing of the corrections so as to minimize the
average total velocity correction consistent with a specified reasonable
terminal accuracy. This optimum timing will depend considerably on the
frequency (not necessarily constant) as well as the accuracy of the meas-
urements, i.e., on the (variable) "information rate".
The average total velocity correction depends partly on launching accu-

racy and partly o the information rate history, especially near arrival at
a planet, but is not greatly affected by a reduction in information rate
over the long mid-course phase. Furthermore, whether on-board measure-
ments of the planet against a star background are made photographically
by astronaut,s or by powered star- and planet-trackers, there are good
reasons for reducing the total number of measurements to be made to a
number very much smaller than the number possible by measuring through-
out at a maximum rate, say once a minute, even though the average total
velocity correction would thereby be somewhat increased. We are led, thus,
to formulate the following:
PROBLEM. Optimize the variable observation rate as well as the correction

schedule so as to achieve a desired terminal accuracy with a maximum value

Received by the editors December 14, 1964, nd in revised form March 11, 1965.
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KNOWN
X "’’="=’" TARGETPOSITION

FIG.

of a specified linear combination of total number of observations and aerage
total velocity correction.
For mathematical simplicity we shall idealize the observation, whether at

maximum rate or a lower rate, as continuous process corrupted by white
noise. We shall also ignore, for mathematical simplicity, any errors in
executing the indicated trajectory corrections, and we may add that engi-
neering estimates indicate that these are relatively insignificant. We shall
furthermore confine attention to an essentially one-dimensional control
problem in which we assume that we are approaching the vicinity of the
target planet with a constant velocity vector interrupted by velocity im-
pulses perpendicular to the nominal straight line approach to the target, or
else by continuous acceleration 2 in this perpendicular direction. (See
Fig. 1.)
We shall make the further importn.t simplifying assumption that the

control acceleration., whether impulsive or not, is linear in the predicted
miss, that is;

(1) 2(t)
where

2(t) 2(t) -[- (T- t)fc(t),
2 and being the best linear estimates of the instantaneous state compo-
nents x and 2 based on assumed noise levels in the (unbiased) continuous
measurements of x and on an assumed variance of an (unbiased) initial
transverse velocity error 2(0), x(0) being assumed negligible, and where
T is the time-to-go. Note that 2(t) is the best estimate of

x(t) x(t) 4- (T- t)2(t),

which is the miss in the absence of further control. In the case of impulsive
corrections, u(t) consists of i-functions.
Now it may be shown that the variance q(t) of the error (2v(t) xf(t)

in the predicted miss decreases according to the information rate, inde-
pendently of u(t)
(2) (t( t) -r( t)a( t)q( t)

where r(t) is the observation rate and a(t) is a measure of the geometrical
effectiveness of the measurements and increases markedly as -- T in the
case of angular measurements of the tgrget’s instantaneous direction.
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On the other hand, if p(t) denotes the variance of the predicted miss
2s(t) and s(t) the variance of the miss zs(t), then

k(t) --2ru(t)p(t),

where r is (time-to-go) T t, and

s(t) p(t) + q(t),

since the error in x(t) is known to be independent of d’i(t). It follows that

(3) "ti(t) --2"ru(t)p(t) --t-r(t)a(t)q(t).
Note that p(0) 0, since the unbiased initial predicted miss vanishes,
while q(0) s(0) T2cov (2(0)). Furthermore, the average total
velocity correction is

E{I u(t)2(t) I} dt u(t)’v/p(t) dt,

assuming u(t) is nonnegative, and the total number of observations is repre-
T

sented by Jo r(t) dt, while the mean-squared terminal miss is

s(T) p(T) -t- q(T).
We thus seek to determine the "control variables" u(t) and r(t), subject

to the inequalities

O<_r_<.R (the maximum observation rate),

0 -<_ u =< (it is simpler to ignore any finite upper limit),

so as to minimize
T

Jo" [2u(t)’v/p(t) + ar(t)] dr,

a being a specified constant, subject to a given sum s(T) of the final values
of the "state variables" p and q whose known initial values are 0 and
T coy (2(0)) and which satisfy the differential constraints (2) and (3),
where a(t) is a known function. We assume that s(T) < s(0), so that a
negative u(t) would not be helpful!
Note that this is a doubly singular problem in that both control variables

occur only linearly in the appropriate Hamiltonian.. We do not know the
solution to this problem but we wish to present a conjecture as to its nature.
Before doing so, let us describe the solution_ of the much simpler problem [3]
in which the observation rate r(t), and hence also q(t), is prescribed; it is
desired to minimize

T

fo 2U(t)’v/-p(t)dt
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FIG. 2

subject effectively to a specified p(T). With the aid of (3) we may write
this cost as

r b(t) dt dp

where b(t) denotes the known function r(t)a(t)q2(t). The difference in cost
associated with 2 different strategies u(t) leading to the specified p(T) is
thus expressed as a line integral around a closed curve in the (t, p)-plane,
which, according to Green’s Theorem, is

0 (b(t)l

evaluated over the enclosed area.
But (see Fig. 2) the integrand of the double integral is easily found to

be positive or negative, respectively, below or above a "critical curve"

p (t)= 1/2rb(t),

which is continuous whenever the observation rate r(t) is continuous. Since

<_ f(t) <= b(t),

where b(t) is the upper limit corresponding to u 0, we see that the optimal
strategy consists of a period of no control, while p rises from 0 to the critical
curve, followed by a period of continuous (non-impulsive) control as long as
r(t) and hence b(t) is continuous, and provided that/i*(t) does not exceed
b(t), followed finally by a period of no control just before arriving near the
target. Note that an instantaneous drop in observation rate and hence in
p*(t) requires an impulsive correction, but any sharp rise in observation
rate produces a critical curve which cannot be followed. In case, for ex-
ample, r(t) is zero between t and t., it is fairly easy to see that the op-
ritual strategy corresponds to the p and s histories shown in Fig. 3. The drop
in observation rate is followed immediately by an impulsive partial cor-
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Fro. 3

rection, followed by a period of no control lasting until some time after the
rise in observation rate when p rises again to critical level p*.

It should be stressed that p and s are mean-squared quantities whose
optilnal histories correspond to an optimal choice of u(t). A typical history
of the random process a/(t)] is not necessarily monotonic prior to control
turn-on and its value at turn-on is not generally at some preassigned
critical level. Neither is its final value specified.
Coming back now to our problem of optimizing both the observation rate

r(t) and the trajectory control gain u(t), we conjecture that the optimal
r(t) is "bang-bang", i.e., that it consists of one or more periods of observa-
tion at maximum rate R, separated by periods of no observation r O. If
so, any period of observation must be followed immediately by an impulsive
correction and then a period of no control lasting into the next observation
period.

If this conjecture is true, we will now show that the solution can be deter-
mined numerically without an undue amount of iteration. To establish the
conjecture, however, it would be necessary to rule out the possibility of
doubly-singular arcs, involving intermediate levels of both r(t) and u(t).
This we have not so far been able to do, but it is appropriate to suggest here
that Kelley’s recent work [4] on tests for singular extremals might be ap-
plicable.
To investigate the computation of the solution if the conjecture is true,

let k(t) and t(t) be adjoint variables corresponding to p(t) and q(t). The
Hamiltonian to be minimized is thus

H X(raq 2-up) traq + 2u%/- + ar.



76 J.v. BREAKWELL

The rates of change of the adjoint variables are"

OH u OH, 2M-u P- 2(t- h)raq.

The terminal constrnint on p q requires thut X, sntisfy the end-con-
straint"

X(T) (T).

The minimization of H with respect to u shows that

during any control period (u(t) > 0), and it is easy to show that an im-
pulsive correction_ preserves the product k %/, the instantaneous drop in p
being matched by a rise in X.
The minimization of H with respect to r shows that r 0 or r R

according to the sign (+ or of the following switching function:

F a-- (u- k)aq.
But we find that

q

r’-- ,:R --"1

4 5 6t2

Fro. 4
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Assuming that a(0) 0 and that a(t) is an increasing function, the com-
putation may proceed (see Fig. 4) as follows"
guess an initial positive value for (u k);
keep r 0 and q q(0) until time tl when a(t) reaches the value
/l[(o) (O)]q(O)l;
now keep r R and u 0 and compute q(t) and p(t) s(O) q(t) until
time t when p(t) reaches the critical p*(t) 1/2-Raq;
compute (t) 1/-//p(t) and t(t) such that [#(t) (t)]q’(t)

[(0) x(0)]q(0);
now keep p(t) p*(t), h(t) 1/-/p*(t), compute q and u//, the
known time derivative of ),(t), and by numerical integration compute
(t ))q, until time t when F again reaches zero;
apply an impulsive drop in p to be determined later, together with the cot-

responding impulsive rise in ,, F becoming again positive;
keep r 0 and q constant until time t, when F is again zero;
now keep r R and u 0 until time t when p(t) again reaches a critical
level p*(t), at which time require that k, which is unchanged since the ira-
pulse, be equal to 1/r%/p*(t);
this last requirement is used, in an iterative loop, to determine the amount
of the impulse at t
the computation then continues on to a time t at which F again reaches
zero, to be followed by another impulse whose amount will be determined by
a later iterative loop, etc.;
each of the times t, t, may be also considered as a time of final ob-
servation cut-off to be followed immediately by an impulse whose magnitude
is such that k jumps to the value t, in order that ), (T) shall equal # (T).

This computation thus provides a finite number of terminal variaxces
s(T) for every guess of the single quantity (0) k(0), and the optital
strategy for any s(T) q(0) is thus quite easily obtained.
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CONTROLLABILITY OF NONLINEAR PROCESSES*

LAWRENCE MARKUS

Introduction. Control theory, as formulated within the framework of
ordinary differential equations, has two general approaches" the qualita-
tive theory of controllability, and the quantitative theory of optimal con-
trol. These two aspects of control theory are unified by the study of the
geometric properties of the set of attainability. In this paper we present
some new results and examples which illuminate the significance of the set
of attainability in both the qualitative and quantitative facets of control
theory.

1. Controllability and regulation. Consider a nonlinear autonomous
process described by a differential system in R" (real n-space)"

$) 2 f(x, u),

where the state vector x is in Rn, the control vector u is in some nonempty
restraint set a c R at each time t, and the coefficient function f(x, u) C
in R+m. We seek to steer or control the initial state x0 ff R to some final
target, xl (usuMly xl 0 is the origin, but the target could be all Rn). The
class A of admissible controllers consists of bounded measurable functions
u(t) c on various finite time durations 0 =<.. =< tl, each of which steers
the response x(t) of

f(x, u(t)), z(o) xo,

tO X(tl) in the prescribed target. In optimal control theory a cost func-
tional C(u) is defined and we seek to minimize C(u) among all admissible
controllers; however we shall suppress this concept when investigating
qualitative control theory.
The tirst two theorems on controllability are easy generalizations of

well-known [2] global stability theory, md the third theorem is a nonlinear
analogue of an important linear controllability criterion [5].
THEOIFM 1. Consider the control process in R,

) f(x, u),

f C in R+’, and restraint u(t) R. Assume there exist a scalar
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function V(x) and an m-vector function U(x) i,n C in R such that:
V x >= O, with equality if and only/f x 0;

(ii) limlxi-o V(x) +
(iii) U(x) ;
(iv) OV(x) fi(x U(x) < O for x # O.

Ox
Then each initial state Xo R can be controlled to an arbitrarily small
neighborhood of the origin.

Proof. Define the response x(t) from x0 # 0 by the solution of the differ-
ential system

f(x, U(x)), x(O) Xo.

Let the control be u(t) U(x(t)), so u(t) . Along the solution x(t)
consider V(x(t)) and compute

dV
dt

OV (x(t) f(x(t) U(x(t) < O,OX,

as long as x(t) 0 (if x(t,) 0, then the origin target has been reached).
Thus x(t) exists for all 0 -_< < m and lies within the compact set in R
defined by V(x) <= V(xo). By the usual technique of A. M. Lyapunov
we find that limt_+ V(x(t)) 0 and so limt++ x(t) 0, as required.

Example. Consider the regulation towards zero of the angular velocity
w (1, , /oa) of a rigid body rotating in inertial space. The Euler
equations of motion are

Here Ia, I:, I are the positive constant principal moments of inertia of the
body and the control vector u(t) (u(t), u2(t), u(t)) satisfies the
restraint u(t)l _-< 1 for i 1, 2, 3. Define the Lyapunov function

v(, , ) 1/215 +/. + i ],

and take

grad V(o),

vhere the constant > 0 is chosen so small that eIo -<- 1 for i 1, 2, 3,
within the solid ellipsoid V(0) =< V(o(0) ). Then the initial state 0(0) c.m
be steered towards 0 0.
THEOltEM 2. Consider the control process in In,

) f(x, u),
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with f(x, u) C in R’+’ and with restraint u(t) c c R". Assume"
(i) f(0, 0) 0,
(it) there exists an m-vector function U(x) in C in R with U(x)

and U(O) O,
(iii) every eigenvalue h(x) of J(x) + jT(x) satisfies k(x) < e < 0 for

all x R and some > O, where

Of (x, V(x)) - Of U(x) OUJ(x) - - (x,
Ox

The each initial state Xo R can be controlled to an arbitrarily small neigh-
borhood of the origin.

Proof. By a result of Krasovskii [2, 8] every solution of the autonomous
system 2 f(x, U(x) exists on 0 =< <: and approaches the origin as
increases. Let the required response be the solution x(t) with x(0) x0.

Define the control u(t) U(x(t)) so u(t) t. Thus the control u(t)
yields the response x(t) by the process $ and limt_ x(t) 0.
The above two theorems assert that the response x(t) approaches the

origin as increases. In order to complete the regulation of an initial state
xo t.,o the exact origin x 0 we need a local controllability result.

Define the domain of null controllability for the process

) 2 f(x, u),

with f C in /.+ to be all those initiM states x0 R which can be
steered to the origin in a tinite time, by admissible controllers. It is clear
tha is a connected set, nd lso (2 is open in R if and only if (9 contains
a eighborhood of the origin.

Consider the linear process in. R

2) 2 Ax + Bu,
with restraint It , R such that the convex hull H(ft) contains u 0 in
its interior. Then the domain of null controllability for og is open in R if
and only if the controllability condition obtains (see [5, 9])"

rank [B, A.B, AB, A-B] n.

The next theorem asserts that the above algebraic controllability con-
dition (at the origin) implies the geometric controllability of the nonlinear
process g. For the linear process og, the "bang-bang" principle states that
responses to controllers in H(t) can also be attained by controllers re-
stricted to ft. We shall prove aIl analogue of this bang-bang principle for the
nonlinear system, g near the origin.
Example. Consider the nonlinear scalar process in R1,

a? u + u,
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with restraint ft’[ u 2. Then the domain of null controllability e is the
hMf-closed interval x _-< 0. Yet the linear approximation near x 0, u 0
is 2 u which is controllable and H(ft) contains u 0 in its interior.
This example shows that the set 2 must be sufficiently small if a suitable
nonlinear bang-bang principle is to hold. Note that the set of attainability
from the origin, for the nonlinear process with control restraint ft, lies in the
half-axis x > 0. For this same process, with the restraint u[ =< 2, the set
of attainability is a segment containing both positive and negative values
of x.
We first demonstrate a special version of the theorem of A. Lyapunov on

vector measures [1, 3, 4]. Consider a compact time interval g’0 =< _-< T
and consider the z-algebra 63 of all Lebesgue measurable subsets of g

(modulo null sets). Let t be the usual Lebesgue measure on 63 so {g, 63, tl
is a measure z-algebra. On 63 we define a metric by the distance

p(E, F) t(EAF) t((E [.J F) (E [’1F)),
for sets E, F 63 (see [4]). It is known [3] that in 63 (or in any nonatomic
z-suba,lgebra ( c 63 with the induced measure and metric), there exists
atopologicMimage of a segment 0 _-< a _-<_ 1 by sets D 63 with
t(D,) ,,() and D D,. if and only if __< .

Notation. Let {g, a, } be a measure z-algebra with the usual metric. A
k-partition of 9 is a collection of lc sets A,..., A in (t with
A U A U U A 9 andA f’l A. 525 for/ j. Consider the produet
metric on the k-fold product of 63 with itself and so define a topology on
the space (Pc of all k-partitions of . Let S be a topologieM space and define
a eontimous family of/c-partitions of g to be a continuous map of S into (P.
LEMMA. Let hi(t),..., hk(t) be integrable n-vector functions on the finite

real intcrval ’0 <= <= T. Let S be the (to 1)-simplex with barycentric
coordinates

O (0 ,’’’, Olk) Oli >= O, c 1.
i1

Then there exists a continuous family of k-partitions of g in 63,

c--- {Al(o),

such hat the inlegrable function
fo - AI(.),

h(t, o)
h,( t) for

satisfies the convexity condition
T "1’

h(t) dt q- q- a, fo " h(t) dr.
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Proof. There exists a nonatomic -subalgebm ( c ( such that the kn-
vector h* (h.., h) satisfies the identity [1, 3]

(D)f,h* dt () fh* dt

for every D (.

Now let D, be a topological image of the segment 0 =< a =< 1 into ( such
that (D,) a(9) and D, c D,. if and only if al =< a.. Foreach point
a (al, ak) of S we define the k-partition of 9 in a by

A(a) D,, so (A.)

A.(a) D.,+. D.1, so

Aa(a) D,+..+. D.I+.,

A(a) D D-.k,

(A) (al + a)t() () c:,(9),

so (Aa) a(9),

so (A) at().

Then it is easy to verify that a -. {A(a), A(a)} is a continuous family
of k-partitions of in a.

Therefore

Thus

h dt a Jl h dt, i 1,
(a)

T T T

as required.
TEOtE 3. Consider the control process in R,

) c f(x, u),

with f C in R+ and restraint u(t) f R’. Assume:
(i) (o, 0) o,
(ii) ft contains m + 1 vectors u u. u,+ which span an m-simplex

with u 0 in its interior, and also contains eu eu. eu,+ for certain
arbitrarily small > O,

(iii) rank [B, AB, AB, A-B] n, where

A Of (0, 0), B Of
o - (o, o).

Then the domain e of null controllability of 8 is an open neighborhood of the
origin in R.



CONTROLLABILITY OF NONLINEAR PROCESSES 83

Proof’. For each small bound

u(t)l <= < eo < 1

on 0 N =< 1, the response x(t) of

$) f(x, u(t) ), x(O) O,

and xL(t) of the linear pproximting system

) 2 Ax + Bu(t), xL(O) O,

are defined on 0 =< -_< 1 and there satisfy a corresponding bound

x(t)!+[xL(t)l <= c(e) < 1

where lim0 c(e) 0. Here the norm of a vector or matrix is the sum of
the bsolute values of all the components.
The restraint set gt contains the vertices , (which we can

assume to have norms less than e0 > 0) of the m-simplex W and so the
convex hull H() contains all of V. For the linear process the set of
attainability K at 1, for solution initiating t the origin, th con-
trollers in W, is a convex set which contains x 0 in its interior. By the
linear bng-bng principle every point of K cn be uttained by responses
of 2 to controllers which assume only the m + 1 vMues at the vertices of
W. Let (t), n+(t) be such controllers whose corresponding linear
respoIses

z() e e Ba()&, i= 1,...,+1,

degermine he vertices c(1), ..-, .(1) of an -simlex N eengered
ag z 0. Denoge he inscribed and circumscribed radii of by c > 0 and
c > O, respeegively.
Take baryeengrie coordinates (1, 4) in S and use he lemma

to obgin a eonginuous family of ( + 1)-partitions of he ime interval
[0 N N 1] for ghe functions

h(t) e-AtBud(t), i= 1,...,n+ ,
so that h(t, a) h(t) for A(a), i 1, n + 1, stisfies the con-
vexity condition

But this means that the controller family (t, a) (t) for A(a),
i 1, n + 1, determines linear responses (t, a) with
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Therefore the mp of S into R defined by the linear responses

is the identity mp on .
Now repeat this entire construction with W, hving vertices u ,
-., u +1, replacing ? s the restraint simplex, for a suitably

small > 0. We use the control fm.ily u(t, ) (t, ) to obtain the
linear responses x(t, ) 2(t, ). Then, if a are the barycentric coordi-
nares of S we find that a x(1, a) is the identity map of S onto
itself.
We compare the mp a x.(1, ) with the mp by the nonlinear re-

sponses x(t, a) of with controllers u(t, a). Clearly the map a x(1, a) is
continuous on S and we show that it approximates the identity
closely on the boundary of S.

For the required estimates we restrict > 0 so

and

u(t, o) < < o

Ix(t, o) + lx,(t, o,) < c(),

on 0 _-< _-< 1, lie in a region wherein

If(x(t, o), u(t, o) Ax,.(t, o) Bu(t, o)

<- c. z(t, ,) + c (t, ,)

of-x (X, U)

where c ca(e) is determined (explicitly, below) in terms of the co.nsants
A , B , o, c, and e. Leg us bow our heads and compute

I(t, ) x(t, ) " f(x(, ), u(, )) Ax(, )-Bu(,) I

]f(x(s, ), u(s, )) f(x(s, ), u(s, ))

+ I(x(, ), u(, )) Ax(, ) Bu(, )

SO

Ix(t,
<-_ Ix(s, ) x(s, ) + fo 2c ds.
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But this implies that (using standard inequalities)

Now we can choose e > 0 so small that
IAI+

and then

c(e) = A + 1

C1x(:,, ) x(, -)l --< - .
Thus the Euclidean norm of x(1, a) x,(1, a) is less than (c/2) for
a{S.
But for a on the boundary of S the Euclidean norm of x(1, a) is not less

than o. By a simple idex argument (or else the Brouwer fixed-point
theorem), we conclude that the image of S, by the nonlinear response
x(1, a), covers an ope bdl neighborhood e0 of the origi in R".

Consider this entire construction for the system

) ](x, u) -f(x, u),

which satisiies the same hypotheses as does . Let 0 be the corresponding
open ball neighborhood of the origin covered by responses of
steers 2(t) from. 2(0) 0 to some point 2(1) in 0, then. u(t) t(1 t)
steersx(t) 2(1 t) bySfromx(0) 2(1) to x(1) 0. Thus the
domain of null controllability ( for contains the open set 0 and ( is an
open neighborhood of the origin i R.

Remark. Theorem 3 holds if eu eu,+a lie in 2 only for certain suit-
a,bly small :> 0; thus t could be finite point set. Of course, if 2 contains
u 0 in its interior, then the hypotheses of the theorem are verified. It
should further be noted that the small simplices in need not be strictly
homothetic to a fixed simple as long as these very smll simplices do not
become too flattened. The simplex in t could be replaced by any convex
polytope about u 0.
The following example shows that the algebraic condition of controlla-

bility is not necessary for the geometric property of controllability for non-
]imar processes.
Example. In R consider the process

$ 2 y’ 2= -x+u,
with restraint ’-1 _-< u _-< 1 in R. iFor u ------ 1 we have the family of re-
sponses along the curves

y (x l)+ 2
const.,
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and for u -= -1 we have the responses along the curves

(X + 1. )2Y + const.
4 2

Now the topological map of R onto itself defined by

x x, YV ysgny,
carries the above families of ovals onto the cxtremal solution curves for the
linear controllable system

= v, --+u, --1 u 1.

Thus every initial state (x, y) in R can be steered to the origin, by solutions
of with controllers in . However the controllability matrix for at the
origin yields

[B, AB] where A.= (0 )-1

which has rank one.

2. Geomeffy of optimal control. The existence of an optimal controller
for a control process

) (x, u),

with f C in .+m, is usually presented as a consequence of the closedness
of the appropriate set of attainability [7]. The following example fails to
have a closed set of attainability and the time-optimal controller fails to
exist.

Example. Consider first the process in R,
8) 2 sin 2u, cos 2ru, -1,

with restraint ’-1 u 1 in R. We wish to steer (0, 0, 1) to (0, 0, 0)
in minimal cost

c() (z + + ).

Since z() 1 , we can assume . 1 for all admissible eongrollers

For each integer 1, 2, 3, define a piecewise continuous con-
troller (() on 0 N N 1 so

sin 2u( () sin
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cos 2u(k) (t) cos 2]t.

The corresponding responses to $ are

x() (t) 1 2rlcCS 2r/t y() (t)= sin2r__’2r/ct z (k) (t) 1 t,

which steer (0, 0, 1 to the origin (0, 0, 0). The cost is easily computed to be

1C u() 1 -- 2r2_k-----

Thus the infimum of all costs is m 1; yet this cannot be attained unless

f0 [x(t) + y(t)] dt 0

or x(t) y(t) =-- O. But this is impossible since 2 + ) 1 (almost al-
ways). Thus no optimal controller exists for the process $. We note that
the set of attainability K for the extended process

2 sin 2ru, cos 2ru, -1, " x + y + 1,

from the initial state (0, 0, 1, 0), is not closed at time 1, since K does
not contain the limit point (0, 0, 0, 1).
We can further modify the example to yield time-optimal control prob-

lem which has no optimal controller. Consider in R,
) dx sin 2ru dy cos 2ru __dz --1

dr x y2 1’ d" x y 1’ d" x y 1’

with restraint t’-1 =< u _-< 1 in R1. We wish to steer (0, 0, 1) to (0, 0, 0)
in minimal time r* > 0. It is easy to see that the infimum of all times rl

required to steer (0, 0, 1) to (0, 0, 0) by is m 1;yet this cannot be
achieved and no optimal controller exists for .
Now consider a control process in Rn,

) f(x, u),

with f Clin Rn+’ and restraint set t Rm. Fix an initial state x0 R
and consider all bounded measurable controllers u(t) on 0 <- tl which
produce responses x(t)on 0 _-< _-< tl, x(0) x0, by the process . The
set of all endpoints x(t) of all such responses is the set of attainability
K(t) for $ from x0 by admissible controllers u(t) 12 on 0 _-< =< t.
A controller’t(t)on 0 =< -<- ti with response (t) leading to the boundary

of K(h) must necessarily satisfy the mximal principle [3]. That is, there
exists a nontrivial solution ,)(t) of the adjoint variational system.
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such that

ofi --- (2(t), a(t)

(t)f(Y(t), (t) max (t)f(Y(t), u)
u

almost always on 0 =< =<- 6.. In particular, the optimal controller u*(t) on
0 <= <-_ t* (for the augmented system where the cost is treated as a new
spatial coordinate) must steer to the boundary of K(t*) and hence must
satisfy the corresponding maximal principle.
For linear processes

) 2= Ax +Bu,

the maximal principle is both necessary and sufficient that (t) on 0 -<- 6
steers the response (t) to the boundary of K(6). However for nonlinear
processes the maximal principle for (t) does not imply that 2(6) lies on
the boundary of K(tl). The following example illustrates this phenomenon
for nonlinear systems.

Example. Consider in R,
2 yu-- xv, ?) --xu yv,

with control restraints u[ =< 1, vl _-< 1 in R2. In polar coordinates the
differential system becomes

-to(t), -u(t).

Take the initial point r0 1, 0 0, and study controllers on the duration
0 _-< =< r. The control functions u(t) and v(t) enter independently in the
angular and radial velocities. Thus it is easy to compute the set of attain-
ability K(r) as the annular ring

K(r)" e _-< r =< e, 0 _-< _-< 2r.

Here K(r) is compact but it is not con.vex, nor even simply connected.
The controllers u( t) -=- A-1, v( t) O, and also u( t) =-- 1, v( t) =- O, each
satisfy the maximal principle but they steer responses to the point r 1,

r, which lies interior to K(r).
We can modify this example to obtain a more complicated geometry for

K(r). Consider the process in R described in polar coordinates by the
system
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where h(q) with period 2r is a function in C satisfying the conditions

h() h(-), 0 =< h(q) _<_ 1,

h(o) 0 on

near O.h() 1 for

Also the constant R is specified by
r/2

R exp h() d.

The restraints are ul =< 1, Iv =< 1, with initial point r0 1, 0 0, as
before.
Art r/2 thesetK(r/2)meetstheray -/2 only for u( t) =--- -1, so

1. Inthiscase -rv(t)h(t) and the segment r/2, 1/R <- r <= R
is an edge of K(/2). Similarly the segment -r/2, 1/R <= r <= R
in K(/2) can be attained only for u(t) - +1. Thus K(/2) is a half-
annular ring, with radial width (e/2 e-/2) at 0 and tapering to a
width of (R 1/R) at +/-/2.
Now consider K() for this system. Only some of the points on the rays

-+-r/2 at time /2 cn reach the ray t time . In the
left half plane the differential system is

=0, (p --u(t) 1--
R V

4

2R
sm

R r h(r- )

Thus the intersection of K(r) with the ray r occurs only at radii
satisfying

1
-0(R- r)sinR_ r

that is, at a countable set of points accumulating at , r R.
This analysis shows that K() consists of an annular-like region, with

rdiul width tupering to nfinimum of (R l/R) ut , and with un
infinite number of disjoint open regions excised along the ray . Thus
K(v) is infinitely connected and its boundary cannot be described by a
finite number of simple closed continuous curves.
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MINIMAX PROBLEMS AND UNILATERAL CURVES IN THE
CALCULUS OF VARIATIONS*

1. Introduction. Let

(1.1)

J. WARGA

dx
2

dt
g(x, t, t)(t)) a.e. in T [to, t],

x(to) Bo, x(t) B,

be a system of ordinary differential equations and boundary conditions,
where x (x1, x) E, g(x, t, p) is a function from E X T X R
to En, Bo and B1 are specified closed sets in E, and the "control" function
p(t) has its range in a specified set R. The problem of determining a control
function p(t) and an initial point X(to) that yield the minimum of Xl(ti),
subject to (1.1), is one of the first and most intensively studied subjects of
the mathematical control t.heory and serves as a point of departure for
related investigations.
We are concerned here with two generalizations of this problem which

have been considered in recent years. Unilateral problems arise when the
integral curves x(t) are restricted to some preassigned set. Pioneering work
in this field was done by Gamkrelidze [2], [3] who considered the additional
side condition a(x(t) <-_ O, T. Gamkrelidze succeeded in deriving neces-
sary conditions tor minimum based on the a priori assumption that there
exists a minimizing unilateral curve with a finite number of "corners"
and satisfying certain "regularity" conditions. Similar results were later
derived by Berkovitz [1] who applied results of the classical calculus of
vriations.
Minimax problems are another generalization of the fundamental prob-

lem of the mathematical control theory. The pursuit problem, investigated
by Kelendzheridze [4], [5], [6], belongs to that class. This problem deals
with the control of a pursuing point } and a pursued point v; these points
satisfy the relations

hl(, u), h2(, v) a.e. in T,
(1.2)

t(o) o, (o) o,
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where u(t)" T --> U and v(t)" T -- V are "conflicting" controls. It is as-
sumed that for every choice of an admissible control v(t) there exists a
control u(t) such that the corresponding solutions (t) and v(t) of (1.2)
have a point in common, say () (). Let u,v represent the smallest
value of such that () v(). Then the solution of the pursuit problem
consists in determining t* maxv minu u,v and controls (t) and O(t)
such that t* minu u, a,. Kelendzheridze [4] derived necessary con-
ditions for minimax in the special case where the pursuing point obeys a
linear law [i hi( , u) A + Bu + c. His attempt [5] to generalize these
results without the linearity assumption seems to be affected by an apparent
logical mistake (in incorrectly applying a dynamic programming principle
to the problem). His results, in fact, cannot be generalized to the non-
linear case as can be demonstrated by a rather simple counterexample (see
4).

Certain general results applicable to unilateral and minimax problems,
and obtained during 1962 and 1963, are described in references [9], [10] and
[11]. In [7], the unilateral problems were considered without making any a

priori assumptions about the minimizing curves. It was shown there that
such problems admit a "relaxed" solution and a procedure was indicated for
uniformly approximating this relaxed solution with solutions of (1.1). In
[9], necessary conditions for relaxed minimum are derived for problems in
which the minimizing curves are restricted by the single inequality a(x(t)
-< 0, T. These conditions generalize Gamkrelidze’s results; they reduce
to form equivalent to Gamkrelidze’s when certain priori verifiable rela-
tions are satisfied (see Appendix A, A2.8). In [11], these results are gen-
eralized to problems in which the unilateral curves are restricted by the
simultaneous inequalities ak(x(t) <= O, T, t 1, m.
The minimax problems studied in [10] can be described by the system

(1.3)
2 g(x, t, p, p(t)) a.e. in T,

x( to p bo Bo x( tl p B pP.

Here p is a parameter with values in a metric space P and x(t, p) represents
a solution for a fixed p. The problem consists in determining a control p(t)
that minimizes maxee x(t, p). It is proved that all such problems be-
longing to a rather general class admit an optimal "relaxed" (or "gen-
eralized") control and that this relaxed control can be "simulated" by
functions p(t) from T to R. Furthermore, necessary conditions for relaxed
minimax are derived; these conditions generalize the Weierstrass E-condi-
tion and the transversality conditions.

In 2 and 3 we shall describe and discuss some typical problems, or
classes of problems, to which the above results are applicable. In 4 we
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shall discuss the pursuit problem. Appendices A and B contain the assump-
tions and the statements of the basic theorems proven in [11] and [10], re-
spectively.

2. A generalized unilateral problem. As in 1, we consider the system

2 g(x, t, p) a.e. in T [to, tl],

(2.1) x(to) Bo, x(t) B,

a(x(t) <- O, T, 1, m.

The previously mentioned unilateral problems consist in minimizing
x(t) (or some other function of x(t)). We may also consider a related
minimax problem.

Let (x) be a scalar function defined on some open set V containing
A {x E a(x) =< 0, ] 1, m}, and assume that (x) has con-
tinuous first- and second-order partial derivatives on V. The problem of
minimizing max,er(x(t)), subject to (2.1), can be easily reduced to an
ordinary unilateral problem. Indeed, we can adjoin to the system (2.1) the
relations -- 0 a.e. inT,

am+a(x()) --dp(X(t)) 8 O, T.

Since s(tl) s is an upper bound of (x(t)) on T, the greatest lower
bound of s(t) over all admissible choices of controls p(t) and of boundary
conditions will be identical with inf maxe r(x(t)).
A very simple problem of this kind is discussed in [9, p. 437]. Assume

that a train has to cover a unit distance in a unit time between two con-
secutive stops, and assume further that its acceleration can be varied at
will between -a and +a (where a > 4). The problem consists in modu-
lating the acceleration in such a manner that the maximum speed attained is
as low as possible.
More complicated problems of this kind arise in the study of the modula-

tion of the lift and drag controls of a space vehicle reentering the Earth
atmosphere. In a simple model of such reentry, the state of the vehicle is
represented by its distance h to the center of the Earth and by the mag-
nitude v and the inclination angle , of its velocity vector. The instantaneous
heat flux due to atmospheric heating is assumed to be a specified function
of v and h. In one application, the initial conditions are specified and it is
desired to modulate the lift and drag coefficients of the vehicle in such a
manner as to minimize the maximum (with respect to time) of the heat
flux. In another application, the initial values of h and v are specified and
it is desired to determine the extreme values of the initial angIe for which
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the scalar acceleration cn be kept during the descent below a preassigned
limit. The first of these two related pplicutions is a minimux problem of
the form rain maxter)(x(t)), nd the second one is a conventional uni-
lateral problem.
The solutions to both of these problems exhibit a property common to

many unilateral problems. The minimizing curves re uniquely determined
during a certain portion of the time interval [to, t], but they can be rather
urbitrarily chosen during the remaining time. We can illustrate this type
of behavior with a very simple example.

Let a point (t, x) in a plane be initially at (0, a), where 1 < a < %/.
Assume that dx/dt can be arbitrarily chosen between -1 and -[-1 for all t.
The point (t, x) must remain on the outside, or on the boundary, of the unit
circle with its center at (0, 0). The problem consists in determining x(t),
subject to the above restrictions, so as to minimize x(2).

This minimum can be achieved as follows: we choose any curve (t, x(t)
joining (0, a) to (%//2, %//2), remaining outside, or on the boundary,
of the unit circle, and whose slope dx/dt remains between -1 und 1; for
> X/-/2, we choose the straight line x(t) %/ t.

3. Minimax problems. Next we consider minimax problems described by
system (1.3). Such problems may arise, in particular, when certain param-
eters are not completely specified, or when they are subject to unpredictable
variations from case to case. This is indeed the situation in most practical
applications.

Consider, as an example, a chemical reaction of fixed duration which is
used to produce a particular chemical substance. The reaction is described
by a system of ordinary differential equations involving time dependent
concentrations of reactants and their derivatives, as well as the time de-
pendent fuel flow and certain fuel parameters. The reaction is controlled by
varying, with time, the flow of the fuel into the furnace. The fuel parameters
are known within certain limits only. A maximin problem will arise if a
decision is made to control the fuel flow in such a manner as to maximize
the guaranteed yield (for all possible values of the fuel parameters) of the
desired chemical substance.
Another application is of the following type" we wish to minimize yl(tl)

among all the solutions of the system ?) g(y, t, po, p), y(to) B0, y(tl)
BI*, where p0 is a fixed value of some parameter and p(t): T -- R and

y(to) are further restricted by the condition x(tl, p) B, p P. Here
x(t, p) is a solution of the system g(x, t, p, p) and X(to, p) y(to).
Such a problem would arise if we had a good estimate of the parameter p0
but wanted to insure that the system will reach the "safe" region B1 in
case the parameters undergo an unforeseen change.



MINIMAX PROBLEMS AND UNILATERAL CURVES 95

Certain variants of the problems described by (1.3) can be reduced to
the same form as (1.3), or can be handled by the same methods. Thus,
the initial condition X(to, p) bo (be independent of p) can be replaced
by the condition x(to, p) bo(p), where bo(p) is a specified function, or by
the condition x(t0, p) B0. Problems of variable duration, or time
minimizing problems, can also be reduced to the standard form.
The necessary conditions for minimax of Appendix B become greatly

simplified when the minimax problem satisfies two special conditions" (a)
the set B1 is the entire Euclidean space En, that is, x(tl, p) is unrestricted;
and (b) for every admissible choice of the relaxed control z(t)" T -- S
and of the initial point b0 there exists a unique point p(z, b0) in P that
maximizes xl(tl, p). Assume that these two conditions are satisfied, let
(t) and 0 minimize maxvpxl(t, p), and let p* p(, 0). Then the
necessary conditions for minimax of Appendix B are identical with the
customary necessary conditions ([8, Theorem 6.1, p. 142], essentially the
Weierstrass E-condition and the transversality conditions) that would
be obtained by assuming that (t) and 0 minimize x(t p*). Formally,
these conditions can be derived as if p* yielded maxp x(t p, (t), 0) and

x(t b0), where x(t; p, (r, bo) is the relaxedand 0 yielded mind.b0 p*, ,
solution of (1.3) corresponding to the parameter p, the initial point b0, and
the relaxed control " T -- S.

4. The pursuit problem. Necessary conditions for optimal pursuit were
derived by Kelendzheridze in [4] for the case hl(, u) A + Bu c, and
were conjectured by him in [5] for nonlinear hi(, u). These necessary con-
ditions are quite strong; they imply that an optimal trajectory of the
pursuing point is an extremal of the system hl(, u), and an optimal
trajectory of the pursued point 7 is an extremal of the system h.(7, v).
The first assertion (that follows an extremal) can be easily seen to hold

for a wide class of pursuit problems, even if h(, u) is nonlinear. Indeed,
the control v of the pursued object 7 becomes known to the pursuer as soon
as it is chosen. Consequently, the trajectory #(t) that will be followed by
is known to the pursuer from the very beginning, and the problem of
determining u becomes a "standard" control problem of a minimum-time
transfer of (0, 0) to the set {(t, (t)) It __> 0}. It is well known that for a
rather general class of problems such a minimum-time transfer requires
that follow an extremal of the system
The situation is quite different for the pursued object 7. Having chosen

an escape trajectory, which then becomes immediately known to the pur-
suer, 7 must face pursuit along any trajectory available to the pursuer.
In some cases (as, e.g., when hi(, u) is linear) only one pursuit trajectory
can lead to a minimum-time capture of 7 for any given choice of the escape
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trajectory. Having "communicated" his strategy to the pursuer, the pur-
sued can in turn predict the comterstrtegy of the opponent. Under such
circumstances, escape along an extreml is often the best policy for the.
pursued .object, as hs been shown by Kelendzheridze for linear h(, u).
The realer may observe the similarity between this result and the necessary
colditions for minimax as described in the las paragraph of 3.
In many other cases, however, this result is not applicable. We shall

describe a simple countereamp]e" let and be point,s in plane, and let
(0) (2, 0) and (0) (0, 0). Let p(r) be differentible (even na-
lyric) increasing function of a nonnegative variable r such that dp(O)/dr

0, p(0) 1.01, p(1.9) 1.02, a.nd p(2) 100. Let admissible con-
trols u(t) (u(t), u(t)) and v(t) (v(t), v(t)) be such that u(t) ]

(u(t)) -t- (u(t)) =< 1 and v(t (v(t)) - (v(t)) =< 1. Finally,
let

=p(ll)u, =.
We can easily verify that all of Kelendzheridze’s assumptions are satisfied,
including the existence of minimax solutions.

If follows an extremal of the system v, then its trajectory is a
straight line, and -(t) t. Let 0 be the angle that the trajectory of
orms with the positive v-axis. Then v can be captured at time t _-< 1.03.
Indeed, can first move at its maximum speed along the circle with center
(0, 0) and radius 2 and it will reach the point s (2 cos 0,2 sin 0) at
t’ .02o .02r. Then can move radially to meet and it will capture v
before

2 1.01 2r
1.03.

2.01 2.01 100

If, on the other hand, remains at (0, 0) for 11 (I u(t) -= 0), then it
will escape capture until t* > 1.86, since Il p(I I) =< 1.02 for II
_< 1.9.
This example shows that escape along an extremal is not lways a good

policy. A man standing in the middle of a circular marsh nd trying to es-
cape a distant car will do better by staying inside the mrsh than by running
way to firm ground.

Necessary conditions for n optimal escape strategy must, therefore,
be much more complicated in general for nonlinear h(, u) than suggested
by Kelendzheridze’s results. We conjecture that the latter results still pply,
however, in. mny cses where the "attainable set" of is simply connected
for all t. (The ttinable set of at time is the set {(; u) u(t)" T U},
where (t, u) is the solution of the system h(, u), (0) 0, cor-
responding to a given control u(t).)
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APPENDIX A

Statement of the problem and assumptions. Let R be a compact
Hausdorff space, E the Euclidean n-space, T the closed interval [to, h]
of the real axis, V an open set in E, and B0 and B1 closed sets in V. We
are also given a function g(x, t, p) (g(x, t, p), gn(x, t, p) from
V X T X Rto E, and afunctiona(,) (al(x), ,am(x)) from V
to E.
LeG(x, ) {g(x, , ) P R}, . V, T, and letF(x, t) be the

convex closure of G(x, t).
1. Definition. We define an original admissible curve with respec to a(x) as

any absolutely continuous function x(t) from T to V such that, for some
function p(t) from T to R,

(1.1) dx(t) 2(t) g(x(t) t, p(t)) a.e. in T
dt

or, equivalently,

(1.1 Original) 2(t) G(x(t), t) a.e. in T,

and

1.2 x (t0) B0, x h B,

(1.3) ae(x(t)) _-< 0, /c 1,2, ...,m, t T.

We similarly define a relaxed admissible curve with respect to a(x) except
that (1.1), respectively (1.1 Original), is replaced by

(1.1 Relaxed) 2(t) F(x(t), t) a.e. in T.

An original (respectively, relaxed) minimizing curve with respect to a(x)
is a curve that minimizes the value x(h) among all original (respectively,
relaxed) admissible curves with respect to a(x).
We now state our basic assumptions.
2. Assumptions. There exist a finite or denumerable collection of disjoint

(Lebesgue) measurable subsets T., r 1, 2, of T whose union T’ has
measure TI h to, positive constants c and e, a function e(h),
h > 0, converging to 0 as h -- q-0, and a compact set D V such that the
following five conditions are satisfied.
(2.1) The functions

Og (x, t, p)
g (x,t, p) and

Ox i, j 1, n,

exist over V T’ R, and over that set they are continuous functions of
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(X, t), uniformly in p, and continuous functions of p for each (x, t); further-
more,

a(x, t, p) g(x, t’, p) --< (It t’
provided and t’ belong to the same set Tr, where

Ilgll (g, ",g) E lgI.
(2.2) g(x, t, p) =< Cl and g(x, t, p) ---< c on v T’ X R;

here g, is the matrix (Og/Oxi), i, j 1, n, and

(2.3) The functions

exist and are continuous on V; furthermore, ak < c, ak c,, and
akg =< cj., / 1, m. Here ak is the gradient of ak,

k Oak

a g . gJ

(2.4) There exists at least one relaxed admissible curve with respect to
a(x).
(2.5) All relaxed admissible curves with respect to (a(x) e,,
a(x) e) are contained in D.

3. Definition. A function f(x, t, ) from V X T X S to E, is a proper
representation of F(x, t) if

(3.1) F(x, t) [f(x, t, () r S}, x V, T;

(3.2) for every absolutely continuous curve x(t) satisfying (1.1 Relaxed)
there exists a function (t) from T to S such that

2(t) f(x(t), t, a.e. in I’

and f(x, t, (r) is, for all x V and ulmost all T, a (Lebesgue) meas-
urable function of r on T;

(3.3) fi(x, t, ) and Of(x, t, )
Ox

i,j 1.,... ,n,

exist and are continuous functions of (x, t) on V X T’ for every in S;

(3.4) IIf(x, t, ) < c and fx(x, t, () <= c on v x T’X S;

ak(x) Oak(x) Oak(x)
lc 1,... m, i,j 1 n,

OX OXiOx
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(3.5) the set

H(x, t, a) {(f(x, t, a), fr(x, t, z)a) 1o S}

in En X En is compact and convex for every (x, t, a) V X T’ X E.
(Here f. T is the transpose of the matrix f.)

4. Definition. Let B c En. We shall say that (C, c()) is a proper rep-
resentation of B at x if
(4.1) C is a compact and convex set in some Euclidean space;
(4.2) c() is a continuous and continuously differentiable function from
Cto B;
(4.3) x c() for some C.

All of the conditions stated in Definitions 3 and 4 are directly verifiable,
except for (3.2). We indicate, therefore, two methods of constructing proper
representations of F(x, t).

5. The Filippov representation. Let S be a compact set in some Euclidean
space, and let f(x, t, z) be continuous on V X T’ X S and satisfy (3.1),
(3.3), (3.4), nd (3.5). Then (3.2) follows from a lemma of Filippov.

6. The Young representation. Let S be the class of probability measures

defined on the Bore]. subsets of R, and let f(x, t, z) j: g(x, t, p) da. Then

(3.1)-(3.4) follow from Assumption 2 and from [7, Theorem 4.1, p. 124].
Condition (3.5).is easily verified, since S is a convex set and f(x, t, ) is
linear in a.

Existence of a minimizing curve. Blecessary conditions for minimum.
THEOREM A. Let Assumption 2 be satisfied. Then there exists a curve x(t)

which is a relaxed minimizing curve with respect to a(x), and this curve can be
uniformly approximated by solutions of the differential equations (1.1).

Let f(x, t, a) be a proper representation of F(x, t), let (C, c,()) be a
proper representation of B at x(t), i O, 1, and let

Z {t T la(x(t)) 0}, k 1,.-.,m,

Z U Z,
and

K(t) {k a(x(t)) 0}, t T.

Finally, let & (, , ), i 1, n, where 0, i j,
and 1. Then either
(A.1) there exist a point * in C and numbers ", , k K(t), such that
C(t*) X(tl), ,ya > O, "y __--> O, K(t),

,+ o,
lK(tl)
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and

a (x(tl)))’c1.(1")1"
1EK(tl)

l(rain (/" + /ax x(tl))).cl.(*)l
IC1 lg(t)

(c ,),orwhere c. is the gradient of c and c, .
(A.2) there exist a function a(t) from T to S, a function t(t) (t(t),
t[’( t) from T to E, a function z( t) from T to E, a closed subset M of Z,
points o* Co and 1" C1, and a nonnegative number /1 such that all qf
the following hold.
(A.2.1) (t) >= O, tc 1, ...,m, and IIz(t) + lira(t)II > o, l T,
where

/=1

(A.2.2) z(t) is absolutely continuous on every closed subinterval of T M.
(A.2.3) For every k, lc 1, m, g(t) is nonincreasing on every sub-
interval of T M, g(t) is constant on every subinterval of T M Z,
and g(t)a(x(tl) O.

(A.2.4) 2(t) f(x(t), t, a(t) a.e. in T, and

(t) --fx ’(x(t), t, (t) )z(t)

t (t)bz (x(t), t, z(t) a.e. in T M,
l=l

where

b(x, t, ) a(x).f(x, t, ),

fr denotes the transpose of the matrix f.,

z(t) o (o, ..., o), (t) O, ] K(t),

z(t-- O) lim z(-) Oand (t-- O) O,l K(t),
r-t-- - M,

if M and is the right endpoint of some open subinterval of T
(A.2.5) The Weierstrass E-condition"

v(t) .f(x(t), t, o-(t)) rain v(t).f(x(t), t, ) a.e. in T,

Mo

where

,(t) z(t) + ,(t)a(x(t)).
1.=-1
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(A.2.6) Support (transversality) conditions"

co( o*) x(to).

(A.2.6.1) v(to)’Co,(o*)o*= rain v(to)’Co,(o*)o.
oo

(A.2.6.2) (’1i z(6) .c,(&*)* n ( z(6) .c,(*)$
c

(A.2.7) There exists a point to* in T, to* < 6, such that v(t) O,
to* < <-_ 6, and
either to* to,
or to* Z and

z(to*) ’ ax (x(t0*))

for some numbers xk >= t
k (to*), k K(to*), and / t (to*), k K(to*),

or to* Z and

Z’ax’(x(to*) 0
lK(to*)

for some numbers , k K(t0*), such that >= 0 and (t0*) 1.
(A.2.8) If there exists a negative number such that, for every subset K of
{1, 2, m}, the relations x V; T; ak(x) < O, k K; a(x) O,
k K;.k > O, k K; and :’ 1 imply

min 3,ax (x) .f(x, t, a) <
r lK

then the set M is empty or contains the single point to.

APPENDIX B

Definitions and assumptions. Let R be a compact Hausdorff space,
E the Euclidean n-space, T the closed interval [to, hi of the real axis, V
an open set in E, B0 and B compact sets in V and P a compact set in
some metric space. We are given the function g(x, t, p, p) (g(x, t, p, p),

g(x, t, p, p)) from V X T X P X R to E, and it is continuous on
Rfor every (x, t, p) V X T X P.

1. Definition. We shall refer to a function p(t) from T to R as an original
control, and we shall say that it is an admissible original control if there exist
a point b0 in. B0 and a function x(t, p) from T X P to V that is absolutely
continuous on T for every p in P and such that, for every p in P,

(1.1) dx(t, p) 2(t, p) g(x(t, p) t, p, p(t)) a.e. in T,
dt

(1.2) x(to p) bo

(1.3) x(t, p) B.
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We shall say that p(t) is a minimizing original control if x
maxveexl(tl, p) exists and p(t) minimizes x among all admissibl,

original controls.
We next define relaxed (or generalized) controls. This concept, patterned

after Young’s definition of generalized curves, is introduced to simulate
"limits" of rapidly oscillating original controls.

Let measurable sets in R be the Borel sets, and let S be the class of
probability measures over R. Then a S if is a completely additive,
nonnegative set function defined on Borel sets, with a(R) 1. Let

(1.4) f(x, t, p, for (x,t,p,(r) V X T X P X S.

2. Definition. We shall refer to a function a(t) from T to S as a relaxed
control and we shall say that it is an admissible relaxed control if there exists
a point b0 in B0 and a function x(t, p) from T X P to V that is absolutely
continuous on T for every p in P and such that, for every p in P,

(2.1) dx(t, p) 2(t, p) f(x(t, p) p, a(t)) a.e. in T,
dt

(.)

(2.3)

A function a(t)

x(to, p) bo,

x(t, p) B.
from T to S is a minimizing relaxed control if x

X-maxe (tl p) existsandz(t) minimizes x among all admissible relaxed
controls.
We observe that every original control is also a relaxed control.
3. Assumption. There exist a finite or denumerable collection of disjoint

measurable subsets Tr, r 1, 2, ..-, of T such that T U Tr has
measure tl to, a positive constant c, a function e(h), h > 0, converging to
0 as h -- 0+, and a compact set D V such that the following six condi-
tions are satisfied.
(3.1) The functions

Og(x t, p, p)
g (x, t, p, p) and

Ox i, j 1, ,n,

exist over V X T’ X P X R, and over that set they are continuous func-
tions of (x, t, p) uniformly in p, are uniformly continuous in p, and are
continuous in p for each (x, t, p). Furthermore, g(x, t, p, p) g(x, t’, p, p)
_-< e(] ]), provided and t’ belong to the same set T,, r 1, 2, -,..
(Here g represents the euclidean length of g.)

(3.2) g(x, t, p, p) l<= c and g(x, t, p, p) <= conVX T’ XP X R,
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where g is the matrix (0gi/0xJ), i, j 1,

Og

(a.3) There exists at least one admissible relaxed control.
(3.4) If z(t) is an absolutely continuous function from T to V such that

2(t) f(z(t), t, p, r(t)) a.e. in T,

X(to) Bo, x(tl) B1,

for some z(t) from T to S and some p in P, then x(t) D for T.
(3.5) B0 c0(C0) and B c(C), where Co and C1 are compact, convex
Euclidean sets and c0(0) and c() are continuously differentiable homeo-
morphic mappings of Co and C onto B0 and B, respectively.
(3.6) The set C (hence also B) is of dimension n, and the matrix c.

(Oci/OJ), i, j 1, n, is nonsingular over C1.

Existence of minimax. Approximations with original controls, llecessary
conditions.
THEOnEM B. Let Assumption 3 be satisfied, and let f(x, t, p, ) be de-

fined as in (1.4). Then the following conclusions hold.
(B.1) There exist a minimizing relaxed control z(t), an associated point
bo Bo, and a function x(t, p) satisfying Definition 2. The vector .function
f(x, t, p, o-(t) and the matrix function fx(X, t, p, z(t) are measurable on T
for every (x, p) V X P.
(B.2) There exist a sequence pi(t), p2(t), "’’, of original controls and a

sequence offunctions x (t, p), xe(t, p), from T X P to V, and absolutely
continuous on T for every p in P, such that

dx(t, p)
dt

g(x(t, p), t, p, p(t) a.e. in T, p P, s 1, 2,

lim-x(t, p) x(t, p) uniformly on T X P, and g(x, t, p, p(t) is a
measurable function of for all (x, p) V X P, s 1, 2, ....
(B.3) There exist () a measurable subset T* of T of measure t to, (b)
a nonnegative regular measure o defined on Borel subsets of P, (c) o-inlegrable
functions O(p) and (p) ((p) ’(p)), (d) a continuous func-
tion (p) from P to C (e) a point Co, (f) continuous functions h(t, p),
j 1, n, from T P to En, absolutely continuous on Tfor each p in P,
such that
(B.3.1) (P) > 0;o(U) 0, where

U IP P Ix(t, P) interior ofB andx(ti, p) < maxx(t, p’)};
prEP
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j=O
a.e. with respect to e;

O(p) >= 0 on P and O(p) 0 a.e. in Z with respect to e, where

Z [p PixY(6, p) < rnx x(6, p’)};
p’EP

(B.3.2) dx(t, p) f(x(t, p) t, p, z(t) on T* X P,
dt

dh(t, p)
dt

--fxr(x(t, p), t, p, z(t))he(t, p) on T* X P,

x(to,p) Co() bo Bo,

x(tl p) o((p) B1 for
h(to,p) , p P,

j 1,...,n,

pP,

j= l,...,n,

where fz r is the transpose of the matrix f, (afi/OxJ), i, j 1, n, and
is the jth column of the unit matrix of order n;

(B.3.3) the Weierstrass E-condition holds"

[ (p)h(t, p).f(x(t, p), t, p, a(t ))de

nfpmin J(p)h(, p).f(z(, p), , p, ) d T*;

(B.3.4) Che support (transversalily) conditions hold"

[o(p) i(p)h(6, p)]’o,((p))(p)

min [o(p) i(p)h(6, p)]’o.((p))(

me. with respect to , where co, is the matrix (Oco/Oo]), i 1,..., n;
i 1, l; dimeio ff Co, ad c. (Oc/Oi), i,d 1, .
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ON SOME EXTREMAL PROBLEMS IN THE THEORY OF
DIFFERENTIAL EQUATIONS WITH APPLICATIONS TO

THE THEORY OF OPTIMAL CONTROL*

R. V. GAMKRELIDZE
1. Introduction. The development in the last decade of optimal control

theory which culminated with the Pontryagin maximum principle [1] has
brought about a renewed interest in the calculus of variations, and par-
ticularly in such classical phases thereof as the theory of the first variation
and first order necessary conditions. It turned out that the classical La-
grange problem in the calculus of variations could be looked upon as a
special case of the optimal control problem, and that the necessary condi-
tion for optimality, the Pontryagin maximum principle, obtained for the
latter problem contained all the classical first order necessary conditions
(the Euler-Lagrange equations, the Lagrange multiplier rule, Legendre’s
necessary condition, and the Weierstrass inequality [1, Chap. 5]). It should
also be pointed out that many of the results recently obtained for the
optimal control problem were actually contained in earlier works of Valen-
tine [2] (see also Berkovitz [3], [4] and Hestenes [5]).

It is now possible to unify many of the results within a single general
framework, and it is to this that the present paper is devoted. The central
idea of this unification is intimately connected with the concepts of gener-
alized curves, relaxed variational problems, and "chattering" controls
considered respectively by Young [6], Warga [7] and the author [8].
In 2, 3 of this paper we shall formulate a general extremal problem in

the theory of differential equations and derive necessary conditions for
extremality. In 4 we shall show that the conventional optimal control
problem and the classical problems from the calculus of variations are
special cases of our formulated general extremal problem, and that the
maximum principle is implied by the necessary conditions derived in 3.
(It should be mentioned that some ideas contained in the work of Halkin
[9] are quite close to the considerations contained in 4.)

2. Formulation of the extremal problem. Let us consider a family F
whose elements f(x, t) are n-dimensional, vector-valued functions defined
for x G and I, where G is a given region (open set) in R (an n-di-
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f The V. A. Steklov Mathematics Institute, USSI Academy of Sciences, Moscow,
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mensional linear vector space) and I is a preassigned bounded, open inter-
val. We shall suppose that the functions f C F satisfy the following con-
ditions:

1. Each f is measurable in over I for every fixed x G, and is of class
C with respect to x in G.

2. For every f F and compact subset X of G there exists a function
re(t), integrable over I and possibly depending on f and X, such that

If(x, t)i <-_ m(t), If(x, t)] <= m(t), for all x X and tE I.

Here, vertical bars denote any vector norm in a finite dimensional linear
vector space, and f is the n X n Jacobian matrix derived from f.
We shall now introduce the concept of extremality. Let us consider the

vector differential equation

(2.a) ](x, t),

where ] is a fixed element of F, and let

(2.2) z(t), tl _-< __< t2, [tl, t.] c I,

be a solution of this differential equation (i.e., z(t) is an absolutely con-
tinuous function that satisfies (2.1) for almost all [h, t.]) with boundary
values

(2.3) z(tl) zx, z(t) z:.

The point (h, t, z, z:) Rn+ will be denoted by q,. Analogously, if we
have a differential equation

(2.4) f(x, t),

where f is an arbitrary element of F, and if

x(t), <= <= , [, ] ,
is an arbitrary solution of (2.4), we shall denote by q the point
(’, , x(rl), x(-)) Rn+. The set of all such q (for ull possible so-
lutions x of all possible equutions of the form (2.4) with f F) will be de-
noted by .Q. Clearly, Q c Rn+.

Let us consider a differentiable manifold N in R+ with boundary M.
For every point q M, let Nr(q) and Mr(q) denote, respectively, the
tangent halfplane to N and tangent plane to M at the point q.
DEFINITION 2.1. The solution (2.2) of (2.1) will be called an F, N

extremal if q M and if there exists a neighborhood U of q such that

U IN Q M.
in this paper, measurability is to be understood in the following sense" a function

is measurable if the preimage of every Borel set is a Borel set.
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In other words, z(t) is a.n F, N, extremal if Q intersects N near qz omy
along the boundary M of N, without penetrating the interior of N.
Of course, the necessary conditions for extremMity in such a general

formulation (without assuming any additional properties for F) may have
to be quite trivial and uninteresting. To obtain meaningful conditions, we
must confine ourselves to particular classes F. For this reason, we shall
restrict ourselves to quasiconvex families F, whose definition we shall now
present. The notion of quasiconvexity encompasses (as we shall see in 4)
Mmost all of the extremal problems involving the minimization of integral
type functionls which arise in the classical calculus of variations and in the
theory of optimal control. Further, it enables us to derive, in a very simple
manner, a necessary condition for extremality which contains the
Pontryagin maximum principle, and the classical first order cotditions in
the calculus of variations, as speciM cases.

Let pr denote the set of all vectors a (al, at) R such that
at >- 0 for each i, and ’=i ai 1. Let [F] denote the convex hull of the
family F, i.e.,

(
[Fl h(x, t)’h(x, t)

_
af(x, t).,

al,’",ar) pr, f F for eachi, r >0 arbitraryt.where

DEFINITION 2.2. The family of functions F will be clled quasiconvex if it
satisfies the hypotheses set forth t the beginning of this section and if, for
every compact set X c G, every finite collection f, fr of elements of
F, and every e > 0, there exist functions f F, defined for every a pr
(and depending on X, the f and e), such that the functions

g(x, t; ) &(x, t) A(x, t)

satisfy the following conditions

1. ]g(x,t;a)l < (t),[g(x,t;a)l < (t) for all x X,
(2.5)

t I, nd a P,
where (t) is some function integrable over I and possibly depending on
X and the f (but not on e);

2. g(x, t; a) dt <
(2.6)

for everyx X,a pr, rl Iandr I;

The author would like to thank L. Neustadt for drawing his attention to the
necessity of including conditions 1 and 3 in the definition of quasiconvexity.
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3. for every sequence {ai} with a pr, which converges to some a pr,
g(x, t; ai) converges in measure (as a function of on I) to g(x, t; a), for
every x X.

It is clear that if the family F is quasiconvex, then it is dense in its con-
vex hull IF] with respect to the topology induced by (2.6). The concept of
quasiconvexity is, as we shall see in 4, intimately connected with the
notion of "chattering controls".
To formulate the necessary conditions, we shall introduce some notation.

It is convenient to consider that the vectors f(x, t) of F are column vectors.
The symbol will always denote an n-dimensional row vector. For each
elementf(x, t) from our class F, we can form the product bf(x, t) H(b, x, t).
Clearly, H is. a scalar-valued function which is linear in , belongs to the
class C with respect to x, is measurable with respect to t, and depends on
the choice off in F. We shall call H the Hamiltonian function of our problem.

Let the solution (2.2) of (2.1) be an F, N extremal. Let H(b, x, t)
](x,t). Then we have the following necessary conditions for

extremality.
THEOREM 2.1. Let the solution z(t), tl <-_ <= t2, of (2.1) be an F, N ex-

tremal, and suppose that F is a quasiconvex family of functions. Then there
exists a nonzero, absolutely continuous vector-valuedfunction b(t), tl <= <= t2
such that z(t), (t), t <= <- t2 satisfy the following Hamiltonian system of
equations for almost all t, t <- <- t

i(t) OH(b(t), z(t), t) ](z(t), t),

(2.7) (t) _O((t), z(t),, t) --(t)](z(t), t),
Ox

and such that the inequality

(2.8) H((t), z(t), t) dt >= g(b(t), z(t), t) dt (t)f(z(t), t) dt

holds for every element f(x, t) F. Further, if ](z(t), t), considered as a func-
tion of t, is continuous at the end points ta and t2, then the (2 -t- 2n)-di-
mensional row vector

(2.9) (((t), z(h), tx), --(b(t), z(t), t),

is orthogonal to M at q (h t2 z(h), z(t) (the transversality condition).

3. loof, of the necessary condition. This section is devoted to the proof
of Theorem 2.1.
Let us consider the convex family of functions IF] ], which is the

convex hull of the family F ] If ]" f F/. We shll denote the
elements of [F] ] by f.
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If m*(t) is any nonnegative, real-valued, integrable function on I, we
shall say that the family F is m*-quasiconvex if F satisfies the conditions of
Definition 2.2, but with (2.6) replaced by the condition:

] g(x(t), t; a) dt

for every a pr, rl I, r, I, and absolutely continuous function x(t)
from I to X that satisfies the inequality

2(t)[ -<_ n*(t)
for almost all I.

Let us show that F is quasiconvex if and only if F is m*-quasiconvex. It is
obvious that m*-quasiconvexity implies quasiconvexity. Conversely, sup-
pose that F is quasiconvex, and let a compact set X G, elements f F,
and a number e > 0 be given. Since m*(t) is integrable, there is a subdivision
of I defined by points s, i 0, 1, ,/c, si <-_ s+l, such that

(3.1) m*(t) dt < 2 (t) dt i O, ...,to-- 1,

where (t) is the function arising in Definition 2.2. Let x(t) be an abso-
lutely continuous function from I to X such that 2(t)[ <= m*(t) almost
everywhere in I. It then follows from (3.1) that

(3.2)
Ix(t)-- x(si) < e 2 (t) dt

for all [s, s+] and all i 0,

Since F is quasiconvex, for every a Pr there exists a function f,(x, t) F
such that the functions g(x, t; a) =af(x, t) f,(x, t) satisfy (2.6)
with e replaced by e/(2/c), (2.5), and condition 3 in Definition 2.2. Let
r I, r2 I. Adjoining the points and r to the subdivision points s
and/or reindexing, if necessary, we shall suppose that rl so and r sk.

Clearly, for every a P",

g(x(t), t; a) dt g(x(si), s; a) ds
i=0

(3.3) k--1

fssi+l+ [g(x(s), s; .) (o(x(s,), s; .)] ds.
i-----0

Now, by hypothesis (see (2.6) with r and replaced by s and s+, re-
spectively),

(3.4)
’+

g(x(s), s; a) ds
e for i 0, .-.,/ 1.< 2-’
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Also (see.(3.2) and (2.5)),

(3.5)

[g(x(s), s; a) g(x(s), s; a)] ds

k--1 fS/+l<__ [max g(-, ; -)I] Iz(s) x(s,) ds
i----0 xE X

< (s) ds
2 f (t) dt ’=

2 f (t) dt

Hence, combining (3.3)-(3.5), we obtain

g(x( t), t; < ,dt

which proves that F is *m -quasconvex. Note that we have shown that if
$F is quasiconvex, then F is m -quasconvex for every nonnegative integrable

function m* (t), and that the function (t) in (2.5) may be chosen inde-
pendently of m*.
We now turn to the proof of Theorem 2.1. Let X G be u fixed, compact

set such that each point z(t), tl --_< =< t, is an interior point of X. Let
if ].=xaf ], where (a,..., a) P ndthef F, be an ar-
bitrary element of IF] ]. Let (t) be the integrable function, for the set
X and the elements ], f, fl of F, that arises in Definition 2.2. Let
re(t) be function integrable over I such that ]f(x, t)l < re(t) and
l](x, t)l < re(t) for each i, x X and I (such a function exists by the
definition of quasiconvexity), and let m*(t) re(t) (t).

Since F is quusiconvex, and consequently *m -quasconvex, there exists,
for every [0, 1], a function g,(x, t) from G X I to R, in class C with
respect to x, and depending on/if and e, such that

(3.6) (] We f q- g,) F,

g,(x, t) < (t), Og,(x, t) < (t)
Ox(3.7)

for every tI and x X,

(3.8) g,(x(t), t) dt < ,
for every solution x(t) of (3.9) (see below) sufficiently near z(t), and every
interval [, r] I on which x(t) is defined.
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Henceforth, let us suppose that, for every tf ([F] f) and every
e [0, 1], such a function g has been chosen (of course, this choice is
generally not unique). Below we shall specifiy the g more precisely for
certain tf IF] ].

Let us "perturb" the differentiul equation (2.1). Namely, let us consider
a fixed element f [F] ], and for every e [0, 1], let g(x, t) be the func-
tion chosen us indicated above such that (3.6)-(3.8) hold. We then con-
sider the "perturbed" equations"

(3.9) 2 ](x, t) -t- e f(x, t) + g,(x, t).

Further, let us consider the following linear vriational equation of (2.1)
along the solution z(t)"

(3.10) i(t) O](z(t), t) z(t) -t- g(z(t), t).
Ox

The functions O](z(t), t)/Ox and g(z(t), t) are defined for Its, t], the
interval on which z(t) is defined. However, it is clear that, for arbitrary
it and tit, we can consider these functions to be defined for t -{- e tih -<_
=< t + e it, whenever e > 0 is sufficiently small, since the solution z(t) of
(2.1) can always be extended beyond h and t, if necessary.

It is now not difficult to show (using standard arguments) that, if e > 0
is sufficiently small, then the solution x(t) of (3.9), satisfying the initial
condition

x(T) z(T) - e tiw,

where T is an arbitrary number in Its, t] and tiw is an arbitrary fixed vector
in R, exists for h + e it <= <- t + e it., and has the form

(3.11) x(t) z(t) + z(t) + o(e), t + t <__ <= t W et,

where z(t) is the solution of (3.10) with the initial value z(T)
and o(e)/e --*0 as e --0 uniformly in t, t _<_ <__ t. Let(t) be a nonsingular
matrix function that satisfies the equation

(t) o](z(t), t) (t).
Ox

Then, z(t) is given by the formul

Ag the endpoings -t- e , i 1 or 2, we have

( + ) z( + ) + () + o().
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By hypothesis, ](z(t), t) is coatinuous at the points ti. Therefore,

and

(3.13)

where

113

x(t + t) z + [z + @l + o() z + ax + o(),

z z(t), z, z(t-), L ](z(t,), t),
(3.14)

xi z+t]i, and o(e)/--0 as e--0.

It follows from (3.13) that the points q, for the solutions (3.11) defined in
2 have the form

z + [z + @l + o()

q + (t, t, z + t,],, z + @) + o().

Or,

(3.15) q q, + (t,, t, x, x) + o().

In the sequel, the number T [t, t:] will be assumed to be fixed.
Let us consider the convex set A R X R X R" X (IF] ]), i.e.,

A {(t, t:, w, f)’t R, t R’, w R, f (IF] ])}.

For every finite subset {f, fm Of [F] ], we define the convex set
A (f, f) as follows"

A (f, f) (h, t, w, f)"t R,
t R, w R, f [f,..., f]},

where [f, f] denotes the convex hull of {f, f}. It is evi-
dent that we can identify A (f, f) with R X R X R X P, i.e.,
with convex subset of R++. Later, when referring to a topology on
A(f, f) (for example, when we discuss continuous functions on
these sets), we shall mean the conventional Euclidean topology in R2+n+m.

Formulas (3.12), (3.14), and (3.15) give rise to mapping h (depending
on e 0) from A to R+ of the form

h((t, t, w, f), ) q q

(3.1)
L(h, t, w, f) + (t, t, w, f, e),
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where L, the linear part of h, is given by

(3.17)

Let afl, -.-, af be fixed elements of ([F] ]), so that there exist functions
f F, i 1, .-., r, and vectors a= (a:l,-.., a,.) pr, i-- 1, .-., m,
such that 8f = aif ]. For every (. ,) pm, let
be the function in [tfl, fm] defined by the relation

Then, because of the quasiconvexity of F, for every fixed e (0, 1) and
P’, there exists a function g(x, t; t) from G X I to R, in class C with

respect to x, and depending on , such that (see (3.6)-(3.8))
1. [](x, t) + 5fa(x, t) + g(x, t; )] F;

2. g(x, t; )] < (t) Og(x, t; ) < (t) for every I and
Ox

x X, where (t) is a function integrable over I that is independent of
and e;

f,’ g(x(t), t; ) dt

for every solution, of the equation

: ](x, t) + af(x, t) + g(x, t; )

sufficiently near z(t), and every interval [, r] I on which x(t) is de-
fined; and, in addition (see condition 3 of Definition 2.2),

4. for every sequence //}, with P’ for every j, which converges to
some P’, g(x, t; f3) converges in measure on I to g(x, t; ) for every
fixed x X and e [0, 1].

For any preassigned functions aft, tif in (IF] ]), we may always
suppose that in choosing the functions g (for every af [F] ] and every
e [0, 1]) in such a way that (3.6)-(3.8) hold, we select functions g(x, t;/)
as described above for every af E [afl, ..., (]. Then, it can be readily
shown that, for every compact subset of A (tif, tiff) there is a positive
number 0 such that the mapping h (see (3.16)) is defined and continuous
on this subset for every fixed e < e0 We emphasize that h is not necessarily
continuous as a function of e, because g need not be continuous in e. It is
easily seen that the linear map L is continuous on A(tifx, ..-, aft), so
that is also continuous on this set for every fixed < 0. We have shown
(see (3.15)) that (atl, at:, aw, 5f, ) -- 0, as -- 0, for fixed ate, w, and
af. By examining the estimates that led to (3.11), it is easily seen that -- 0
uniformly in any preassigned compact subset of A(fl, ..., f,) as

"- 0.
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a neighborhood

(3.18)

where

(3.19)

Let

K L(A).

Lvldently, K is a convex set in R2+2n containing the origin.
We return to the manifold N c R+2n with boundary M. Let us denote

Nr(qz) and Mr(q) simply by Nr and Mr, respectively. Clearly, Mr is the
edge of NT. Since N is differentiable, there exists a homeomorphism h, from

of qz in NT onto a neighborhood of q. in N, of the form

](y) y + (y),

lira (Y) O.
yCUq

We shall now show that the convex sets K and (Nr q) in R:n+,
which have the origin as a common point, can be separated, i.e., that there
exists a hyperplane II of dimension (2 - 2n 1) through 0, such that K
is contained in one of the halfspaces defined by II, and (Nr qz) is con-
tained in the other.
Suppose the contrary. Then the carrier planes of (Nr qz) and of K

are in general position, and there exists a point 0 which is a (relative)
interior point of both (Nr qz) and K. Let U be a bounded neighbor-
hood of , in the carrier plane of (Nr q), which is contained in the interior
of (Nr q). Let m be the dimension of K, 0 N m N 2 + 2n. Then there
exists a simplex K, of dimension m such that 0 interior of K, and K

interior of K. Consequently, there exist elements f (IF] ]), i 1,.., m + 1, and an m-simplex S,, A(f, ..., f, f+) such that
L(S) K. Note that Sm is compact.

Let us choose the functions g that correspond to elements f
[fl, "-’, f+] in the manner indicated above. Then the restriction of
h on S, for fixed e (see (3.16)), is defined for M1 > 0 sufficiently small,
and is continuous on S for each such e. Further, if e 0 is sufficiently
small, the set (q + e U) is contained in Uq. Thus, for e > 0 small enough,
we can define the following continuous mapping from S X U into R+:n"

if S,v U,let

(, ; ) h(, ) 1 f(q + ) +

L() + (, ) e(q. + ).

Since the carrier planes of K and of (Nr q) are in general position,
and L(S) U, the image of S X U under the mapping L() n
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(the linear portion of the mapping v(, 7; e)) contains a neighborhood of
the origin.

Since (, e) -- 0 as e --+ 0 and -1 (q + e 7) -- 0 as e --+ 0 (see (3.19))

uniformly in (, 7) Sm X Us, it follows from the Brouwer fixed point
theorem that, for all sufficiently small e > 0, the image of Sm X Us under
the mapping v(, /; e) will contain the origin; i.e., for every > 0 sufficiently
small, there exist points Sin, v Us such that

L() + (, ,) + -(q +, ),

or (see (3.16) and (3.18)) there is a point q Q such that

q fi(q + ).

Now n Us c interior of (Nr q,), so that (q q- e v) interior of Nr.
Since/ is a homeomorphism, this means that there exist points q Q f’l
(interior of N) arbitrarily close to q, which contradicts the fact that
z(t), tl <-_ __< t, is an F, N extremal.

Thus, let H be the plane that separates K and (Nr q) in R+,
and let p 0 be the normal to II such that (considering p to be row
vector)

(3.20) pi" -<_ 0 _<_ Pv for every K and / (Nr- q).

Since (Mr qz) (Nr q), and (Mr q) is a plane through the
origin, it follows from (3.20) that (Mr q) II. Therefore, p is orthogonal
to MT, i.e., to M at q. Let p (xx, x2, p, p:) where x and x are scalars,
p and p2 are n-vectors. It follows from (3.20) and the definition of K that

(3.21)

for every vector " (i6, it2, iX, iX2) K, i.e., for arbitrary scalars
tita, tit, and vectors (see (3.12) and (3.14)) 6x.i of the form

ax 6t] + (t) -(T)aw + -a(s)6f(z(s), s) ds

where 6w is an arbitrary vector in R" and g is arbitrary in ([F] ]).
Hence, (3.21) implies that

(c 0 ] :),
(3.22) x+ p] 0, i 1 or2,
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3.23 plcI (tl) p2(I (t2).

Therefore, also for every f IF] f,

jt, ft(3.24) p,g. (t,g) -f ds p(t)
i=l

Let

d-l(f ds O.

Then, by virtue of the definition of q)(t), the row vector k stisfies the
following differential equation:

(3.25) (t) -(t)](z(t), t),

and (3.24) can be rewritten in the form

(a.2() (s)f(z(), s) d <= O.

Since (3.26) must hold for every if (F ]) (IF] ]), (3.25) and
(3.26) imply (2.7) and (2.8).
Note that (t) 0. For if (t) - 0, then p2 0, which by (3.22) and

(3.23) implies that pl 0 and : x2 0, i.e., that p 0, which is a
contradiction.

Since p is orthogonal to M at q, the proof of the theorem will be com-
plete if we can show that p coincides with the vector (2.9). But this is an
immediate consequence of (3.22), (3.23) and the definition of (t).
Note that (3.20) implies that p is directed into the halfspace defined by

II that contains N, qz

4. Applications to control theory and the calculus of variations.
Let y be an (n 1)-dimensional column phase vector which satisfies

the differential equation:

(4.1) Y(y, u, t),

where the function Y is defined on G X U X I, G being ooil open set in
R"-1, U an arbitrary (but fixed) set in R, and I a bounded, open time
interval. Let us assume that Y is of class C with respect to y, and measurable
in (u, t) for every fixed y G. We shall consider differential equations
(4.1) where, for u, we substitute a so-called "control" function u(t).
We shall confine ourselves here to control functions defined on I which are
metsurable and essentially bounded, and whose range is contained in U;
and we shall denote this class of functions by l}. We shall also suppose

See footnote 1.
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that, for every function u(t) [], and every compact subset X of G, there
exists a function r(t), integrable over I and possibly depending on X
and u(t), such that

Y(y, u(t), t) <= (t), lYe(y, u(t), t) <= t(t)

for every y X and I.

Let us suppose that we are interested in solutions y(t), rl <= <= r2,

(rl, r2 I), of (4.1), with u u(t) and u(t) , that satisfy the bound-
ary conditions

(4.2) (rl, r, y(r), y(r)) 0, i 1, ,k, k <= 2n,

where , are preassigned differentiable functions from /I2n tO /1.
Finally, let us suppose that there is given, a functional

r2

(4.3) J L(y(t), u(t), t) dt,

where L is scMar-valued function, satisfying the same hypotheses as Y.
Let denote the class of all 4-tuples (, y, , ) such that , , T1

and are real numbers in I with 1 =< , and y is a function frora [1, ] to
R"- that is a solution of (4.1) with u (t) satisfying the boundary
conditions (4.2). Then the standard optimal control problem, consists in
finding un element (u*, y*, h, t) that minimizes (in ) the value of
the functional J given by (4.3).
We shall show that if (u*, y t,, t2) is a solution of this problem, then

it is possible to construct a quasiconvex family F of functions f(x, t) and
a manifold N with boundary M in R+ (see 2) such that the n-vector
valued function

x (t) yo*(t)
t < < t,

\y*(t)

where

yo*(t) ftt L(y*(s), u*(s), s) ds,

is an F, N extremal. Indeed, let

(x, u, t) (L(y, u, t))(4.4) \ Y(y, u, t)

F {f(x, t)" f(x, t) ’(x, u(t), t), u(t)

where x (x0, y) Ra X G and t I; and let R+= be the space of
" m) where r r */o and vo re scalars,parameters (r,
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and nl and 2 are vectors in Rn-1. The manifold N in R2+2n consists of all
" where T1 T2 71 and 72 are near tl, t2,points (rl, r, 70, 71, 70, 72),

y (tl), and y (t2), respectively, that satisfy the relations

qi(T1, T2, 71, 72) 0, i 1, 1,

n0’= 0, 70 _-< y0 (t2);

and M consists of the points of N for which the last inequality is replaced
by an equality. It is now evident that the function x*(t), defined above, is
an F, N extremal.
Sometimes (e.g., in the minimum-time problem), the optional control

problem may instead be formulated as follows. Find an element
(u*, y* h, t2) -t that minimizes (in 5) the function 0(, r, y(r),
y(,)), where 0 is a preassigned differentiable function from R’ to R
(in this case, we require that lc < 2n in (4.2)). Let

(4.4’) F’ {f(x, t):f(x, t) Y(x, u(t), t), u(t) ft},

where x and the values of f are both in Rn-. If (u*, y*, h, t) is a solution
of this problem, let the manifold N in R2 consist of all points (r, r,
71, 72), with r a real number near t and 7, a vector in R- near y*(h),
i 1 or 2, that satisfy the relations

q0( 7"1, T2, 71, 72) (0( tl, t2, y* (h), y* (t))

i= 1,-.. ,/c,

and let M consist of those points of N for which the last inequality is re-
placed by an equality. Evidently, the function y*(t) is then an F’, N
extremal.

In order to be able to apply the necessary conditions stated in Theorem
2.1 to the two optimal control problems described above, we need only
verify that the families F and F given by (4.4) and (4..4.’) are quasiconvex.
But this is an Mmost immediate consequence of the following fundamental
lemma.
LMM 4.1. Let f(x, t), i 1, ..., m, be functions from X X I to R,

where X is a compact metric space and I is a finite, open time "interval. The
functions f.i are assumed to be measurable in over I for every fized x X,
of class C, r >= O, with respect to x X, and to be dominated, together with
their first r partial derivatives with respect to x, by a function N(t) integrable
over I

f(x,t) <= (t), @(z,t) <= t), for all x X,t I,

j 1, ,r, andi 1, m.
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Further, let p(t), i 1, .-., m, be nonnegative real-valued measurable
functions which, for ahnost all (_ I, satisfy the relation:

(4.6) p(t) 1.

Then, for every > 0, it is possible to subdivide I into sufficiently mall
subintervals E., j 1, +/-2, and to assign to each E one of the func-
tions f(x, t), f,(x, t), which we shall denote by f: such that the function
f x, defined by the relation

f(x, t) f(x, t) for E, j +/-1, +/-2, ...,
satisfies the iequality

t.

p(t)f(x, t) f(x, t) dt <

for every tl t2 in I, and x X. Consequently, f(x, t) is of class C with respect
to x, measurable in for every fixed x X, and

If(x, t) <- (t), lOaf(x, t)/Ox] <= (t) for every I, x X,

and j= 1, ...,r.

Remark. In order that the function f(x, t) be well defined, it is clear that
the intervals E. must be mutually disjoint. We must keep this in mind in
the proof of the lemma.

Proof. Let us subdivide I into mutually disjoint subintervals
a +/-1, +/-2, und further subdivide each I, into m mutually disjoint
intervals E,:, i 1, m, such that

meas (E,) f p(t) dt.

Further, let us define the function f(x, t) by means of the relation

(4.8) f(x,t) =f(x,t) for E, i= 1,-..,m;a= +/-1,+/-2,....

We shall now show that, for every g > 0, there exists u > 0 such that if

hen

max (meas

(4.9) p(t)f(x, t) f(x, t) dt <=
i1

for every h I, t I, nnd x X.
Note. It will be clear from the proof that the intervals E, defined above
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may be replaced by arbitrary, measurable, mutually disjoint sets satisfying
the relations

(.J E, I,, a -+- 1, -+- 2, ;meas (E,,) p(t) dt.
i=1

Let > 0 be given, and let /2(m + 2 + meas I). Let g g(x, t),
i 1, m, denote continuous functions defined on X X I satisfying
the inequMities

(4.10) /rIfi(x,t)-g(x,t) dt<=e for every xX and i=l,...

(The existence of such functions will be demonstrated later. Let us suppose
that the subdivision of I into the I is sufficiently fine that

(4.11) gi(x, t’) g(x, t")[ <= for every x X, i 1, ..., m,

whenever t’ and t" both belong to the same I, and that

(4.12) f (t) dt <= e for every a :t:1,-+-2,...,

where (t) is the function introduced in (4.5). Such a subdivision exists be-
cause of the continuity of the functions g on X X I, nd the absolute
continuity of the indefinite integral of (t).

Let us now estimate the expression

f p(t)f(x, t) f(x, t) dt
akl i=l

where ]c and ]c, ]c ]c, are arbitrary integers and x is an rbitrary elemen
of X. We shall make use of the equality

f(x, t) dt f(x, t) dt,
i------1 ai

which follows from the definition (4.8). We have

f dt

o

a(

By virtue of (4.6) and (4.10), we have
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2 k p(t)f(x, t) f(x, t) dt
akl i1

(4.13)

<= 2me+ pg dt g dt

We now estimate the second term in the right-hand side of (4.13). Let t
be n arbitrary point in I, a 1, 2, .... Denote g(x, t) by

,,(z). It follows from (4.7) thag

p(t)g.(x) dt g p(t) dt

i=1 i=1

Consequently (see (4.11), (4.7), and (4.6)),

P gi dt g dt
i1 -hus, (4.18) can be written in the form.

(4.]4)

For every h and t: in I, there exist integers kl and k such that

p(t)f(x, t) f(x, t) dt pf f dt
il a=kl il

Consequently,
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,]K

where K1 I1, K I for some , . Consequently (see (4.5),
(4.14), and (4.12)), we obtain the inequality

a=kt

2(m+measI)+2f (t) dt
jI

+ 2 (t) dt 2(m+ measI+ 2) ,
which is the desired inequMity (4.9).

It oMy remains to prove that there exist continuous functions g(x, t)
satisfying (4.10). Let us fix the index i. Without loss of generality, we
shM1 let i 1. Let us cover X by a finite number of open sets U, j 1,

s, such that

(4.15) f f(x’, t) f(x’ t) dt < ./2

whenever x’ nd x’ belong to the same U.. Such a covering always exists
because the function/(x, defined by

Xt! fI ft(x’, f(x t) f(x t) dt

is continuous on the compact set X X X (this follows from the continuity
off in x and from (4.5)). Further, f(x, x) 0 for all x X, i.e.,
vnishes on the diagonal in X X X. Finally, for every neighborhood D of
the diagonal, there exists a number p > 0 such that (x’, x") D when-
ever the distance between x’ and x" is less than p, which implies the validity
of (4.15).

For each j 1, s, let x be a fixed point of U. Then, as is well
known, there exist continuous functions h(t), j 1, -.., s, defined for

I, such that

(4.16) ](x, t) h(t) dt
e, j= 1,...,s.

Now let the functions (x), (x) form the partition of unity on X
with respect to the covering {U}, i.e., the are nonnegative, (x) 0
for x $ U, and =(x) 1.
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We shll prove that if gl(x, t) is given by the equality

g(x, t) (x)h( t),

then g(x, ) provides the desired continuous approximation to f(x, ).
In fact,

ill(x, t) g(x, t) dt

_<_ f : .()[f(x, t) f(x, t)] + (x)[f(, t) h(t)]
(4.17)

j=l

But, for each x X,

(4.18) j(x) Ifl(x, t) f(xj, t) dt <= - (x), j 1, ..., s.

Indeed, (4.18) is a consequence of (4.15) if x U, nd, if x U,
both sides of (4.18) vanish. Hence, using (4.16), we can rewrite (4.17)
in the form

= (x) + (x) ,
which ws to be proved. This completes the proof of the lemm.

In order to show that the fmily F given by (4.4) is qusiconvex, let X
be ny compact subset of G, let f(x, t) (x, u(t), t), where u(t) ,
i 1,..-, m, ndletp(t) a, i 1,..., m, where (a,... ,a) P.
If we now apply Lemma 4.1, noting that the sets I my be chosen in-
dependently of the functions p(t) (see (4.11) nd (4.12)), nd that the
interwls E (for every a 1, 2, my be selected in such wy
that E, is to the left of, nd adjoins, the intervM E+, for i 1,
m 1, we conclude lmost immediately that the fmily F is qusiconvex.
Note that the functionf(x, t) defined by (4.8) in this cse lso hs the form
f(x, t) F(x, u(t), t), where u(t) is given by

(4.19) u(t) u(t) for E, i 1, .-.,re;a= 1,2,--..

The control u(t) defined by (4.19) is sometimes referred to s "chatter-
ing control".
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In precisely the same way it can be shown that the family F’ defined by
(4.4’) is also quasiconvex. Thus, Theorem 2.1 may be applied to both of the
optimal control problems discussed above.

All of the previous statements carry over to the case where the set U is
replaced by a family of subsets U(t) of R, defined for every I, and the
class t is redefined as the set of all measurable, essentially bounded func-
tions on I satisfying the relation u(t) U(t) for almost all I.

If the set U is fixed, and if the functions L and Y are, in addition, con-
tinuous with respect to both u and t, we can show that Theorem 2.1 implies
the Pontryagin maximum principle as stated in [1]. Namely, suppose that
](x, t) f(x, u* (t), t) where u* (t) t. Then we shall show that (2.8)
implies that

(t)(z(t), u*(t), t) sup p(t)(z(t), v, t)
(4.20)

for lmost all [tl, t2],

which is here equivalent to the maximum principle. Indeed, suppose the
contrary, so that if

J {t" /(t)(z(t), u*(t), t) < supk(t):(z(t), v, t), t [h, t2]},

then meas (J) > 0. Let J be a regular point for u*(t) (see [1, pp.
76-771), i.e.,

(4.21 lim
meas (u-1(0) 91 E)

-0 meas E 1,

where E is an arbitrary interval which contains , for every neighborhood
0 of u*(). Such a point exists because almost every point of I is regular
point for u*(t). Since J, there is a point v* U such that

(4.22) () F(z(), u*(), [) < ([) F(z (), v*, ).

Relations (4.21) and (4.22), together with the continuity of the functions, , and z, imply that if

J*

then meas (J*) > 0. Let us define (t) as follows"

*(t) if $ J*,t I,
(t)

Iv* if J*lI.

Clearly, (t) , so that (x, (t), t) F. But then
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t2

ft
t2

p(t) (z(t), u*(t), t) dt < p(t) ?(z(t), (t), t) dt,

which contradicts (2.8), and thereby proves the validity of (4.20).
Since it was shown in [1, Chap. 5] that all of the first order necessary

conditions of the classical calculus of variations follow from the Pontryagin
maximum principle, these conditions are also a special case of Theorem
2.1.

Finally, let us demonstrate how Theorem 2.1 may be applied to an optimal
control problem which does not directly fall within the framework of the
Pontryagin maximum principle. Namely, let (4.1) have the form

(4.23) A(t)y -- B(t)u,

let U R", and let 0(r.1, r2, y(rl), y(r2)) r2 r. Let us suppose that
A and B are measurable, essentially bounded functions of over I. Then
it is clear that Y satisfies the hypotheses described at the beginning of this
section. Let us then consider the second type of optimal control problem
described above, with the following additional constraint imposed on the
members of "
(4.24) f (t) ]2 dt 1,

where u denotes the ordinary Euclidean norm in R". In more conventional
terminology, we have a minimum-time problem for systems described by
the linear equation (4.23) under the constraint (4.24). Here, instead of
using (4.4’), we define the family as follows"

{f(x, t):f(x, t) A(t)x-t- B(t)u(t),u(t) t, f,u(t)12dt <-1}.
It is easily seen that /Y is convex, and afortiori, quasiconvex. Applying
Theorem 2.1 in the manner indicated above, we conclude, on the basis of
(2.8), that (if u* (t) is the sought optimal control)

p(t)B(t)u*(t) dt >-_ (t)B(t)u(t) dt

for every function u(t) t such that f u ]2 dt _<_ 1. But this is equivalent

to the relation

u*(t) B’(t)p’(t) (s)p’(s) d for t -< _<_ t2,

where the prime denotes transpose. Also, note that by virtue of (4.23),
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(2.7) has the form

-A(t).

5. Generalizations. It is clear that the point q defined in 2 may instead
be defined as the point (tl, t2, t, t,, zl, z2, z3, z,) Rm(+l,
where z(ti) zi for i 1, m, and ti [t, t2] for i 3, m. It is
then possible to define an F, N exremal in an entirely analogous manner
(N is now a differentiable manifold in R’(+ with boundary M), and,
wiLh only slightly modified argumet.ts, derive a theorem which generalizes
Theorem 2.1.
The next order of generalization leads to the so-called problem of "re-

stricted phase coordinates" (which has been treated, for example in [1,
Chap. 6], [4], and [11]), for which, in place of Rm(n+l), one mus consider
an appropriate function space. This problem will be treated in future
papers.
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EXTREMAL PROBLEMS IN AERODYNAMICS*

ANGELO MIELE
1. Introduction. The determination of optimum aerodynamic shapes has

interested the scientific community for centuries. Historically speaking,
the first problem of this kind was the study by Sir Isaac Newton of the
body of revolution having minimum drag for a given length and diameter.
Not only did Newton employ an analytical technique analogous to the
modern calculus of variations, but he also postulated a law of resistance
which has been recognized to be a good approximation to that of a hyper-
sonic inviscid flow. In the early part of this century, the use of advanced
mathematical techniques in the analysis of subsonic and supersonic flows
stimulated a renewed interest in optimization problems. In particular,
Munk determined the lift distribution which minimizes the induced drag of
a subsonic wing having a given span and lift; furthermore, Von Krmn
determined the shape of the slender forebody of revolution which mini-
mizes the pressure drag in linearized supersonic flow for a given length and
diameter. In more recent times, the advent of jet and rocket engines as
aircraft propulsion systems and the parallel increase in flight velocities and
altitudes have made it necessary to extend the optimization of aerodynamic
shapes to a wider range of Mach and Reynolds numbers, thereby including
the hypersonic and free-molecular flow regimes.

Since the distributions of pressure and skin-friction coefficients depend
on the flow regime, a single optimum body does not exist; rather, a succes-
sion of optimum configurations exists, that is, one for each flow regime and
each set of free-stream conditions [1]. In addition, the optimum geometry
depends on the quantity being extremized (aerodynamic drag, lift-to-drag
ratio, surface-integrated heat transfer rate, sonic boom of an aircraft,
thrust of a nozzle) as well as on the constraints employed in the optimiza-
tion process, whether geometric quantities (length, thickness, volume,
wetted area, planform area, frontal area) or aerodynamic quantities (lift,
bending moment, pitching moment, position of the center of pressure).

In 2 the physical models of interest in the theory of optimum aerody-
namic shapes are reviewed. The corresponding mathematical models are
illustrated in 3 for problems involving one independent variable and in 4

* Received by the editors April 9, 1965, and in revised form April 14, 1965. Pre-
sented at the Symposium on the Mathematical Theory of Optimal Control, held at
the University of Michigan, October 5-7, 1964.

Department of Mechanical Engineering, Rice University, Houston, Texas. This
work was supported by the Office of Scientific Research, Office of Aerospace Research,
United States Air Force under Grant No. AF-AFOSR-828-65.
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for problems involvitg lwo independent variables. Finally, new trends in.
the t.heory of optimum aerodynamic shapes as well as certain problems of
interest in t,he immediate future are outlined in 5.

2. Physical models. In this section, some of the physical models of cur-
rent interest in the theory of optimum aerodynamic shapes are reviewed.

2.1. Linearized supersonic flow. For relatively slender shapes in flight at
Math numbers not too close to unity and yet not too large with respect to
unity, the small perturbation theory can be employed when estimating the
aerodynamic forces acting on a body. In other words, the nonlinear set of
equations governing the motion can be replaced by one which is linear.

Because of the linearity, the method of superpositio can be employed,
and general analytical solutions can be derived for the aerodynamic forces
acting on either a two-dimensionM shape or an axisymmetrie shape whose
contour is arbitrarily prescribed. For a two-dimensionM shape, the local
pressure coefficient has the form. C ?); that is, it is proportional to the
inclination of the tangent to a surface element with respect to the free-
stream direction*. On the other hand, for an axisymmetrie shape, the
pressure coefficient no longer depends on the local slope of a surface ele-
ment, but it is governed by the geometry of the entire body portion pre-
ceding that element.

2.2. Nonlinearized supersonic flow. Whenever the combination of
thickness ratio and Math number is such that the linearization process is
not permissible, a more precise approach to the determination of the fluid
properties is necessary. In. this connection, one can employ a pressure cocfS-
cient derived from second or higher order approximations to the equa-
tions of motion or, where possible, one can use the complete set of equations.

If expansion processes are considered (this is the case with a rocket
nozzle), the pressure coefficien has the form C C(w); that is, it de-
pends only on the local velocity w. On the other hand, if compression proc-
esses are studied (this is the case with a forebody), the pressure coefficient
has the form C C,(w, p0); that is, it depends on the local values of both
the velocity w and the stagnation pressure p0. In turn, the local values of
the velocity and the stagnation, pressure depend on the geometry of the entire
body portion preceding given, surface element and must be determined by
solving the partial differentiM equations governing the flow field within a cer-
tain region of interest.

2.3. Newtonian hypersonic flow. Whenever t,he free-st,ream Math num-
ber is sufficiently large with respect to unity, the shock wave generated by

* The symbol x deno6es a coordinate in the undisturbed flow direction, y a coordi-
n.ate perpendicular to x, and 9 the derivative dy/dx.
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the body lies so close to the body that it can be regarded to be identical
with it. Consequently, the pressure distribution can be determined with
the assumption that the particles striking the body conserve the tangential
component of their velocity but lose the normal component.
For both two-dimensional and axisymmetrie shapes, the local pressure

coefIicient is given by the sine-squared law Cp 2 sin 0, where t? denotes
the inclination of the tangent to a surface element with respect to the free-
stream direction. This law is also valid for a three-dimensiona,1 shape,
providing 0 is interpreted as the angle which the free-stream velocity forms
with the. particular tangent which is coplanar with said velocity and the
normal to the surface element under consideration.

2.4. Newton-Busemann hypersonic flow. A basic hypothesis of the New-
tonian flow model is that the pressure at a point immediately behind the
shock wave is identical with the pressure at the corresponding point of the
body. Even if one admits that the layer of gas between the shock wave and
the body is infinitely thin, the equality of the pressures is justified only if
the gas particlesafter crossing the shock wave--move along rectilinear
paths; this is precisely the case for a wedge or a cone. On the other hand, if
the body surface is either convex or concave, the gas particles in the thin
layer between the shock wave and the body move along curvilinear paths,
that is they are subjected to centripetal accelerations. Therefore, the actual
pressure on. the body is lower than that predicted with the Newtonian
theory for convex bodies, but higher for concave bodies.
The resulting pressure correction was first calculated by Busemann;

hence, this flow model is called the Newton-Busemann model and, while
more complicated than the Newtonian model, it is still relatively simple for
analytical purposes. The reason is that, if the slender body approximation
is made, the local pressure coetticient has the functional form Cp

C(y, , ?); that is, it depends only on the geometric properties of a
surface element and is independent of the configuration of the body portion
preceding that element.

2.5. Free-molecular flow. In the previous sections, it was tacitly as-
sumed that the gas is a continuum, that is, the mean free path is small with
respect to a characteristic dimension of the body. Whenever the mean free
path is large with respect to a characteristic dimension of the body, the
nature of the flow is free-molecular. The incident molecules are undis-
turbed by the presence of the vehicle, that is, the incoming and reflected
flows are transparent to each other. For analytical purposes, two idealized
models have been employed thus far, and are now illustrated.

In the specular reflection model, the molecules hitting the surface are re-
flected optically, which means that the tangential velocity component is



132 ANGELO MIELE

unchanged while the normal velocity is reversed. Under the hypersonic
approximation (that is, if the square of the normal component of the speed
ratio is much greater than one), the pressure coefficient is given by C,

4 sin 0 and the skin-friction coefficient is C 0.
In the diffuse reflection model, the molecules hitting the surface are first

absorbed and then reemitted with a Maxwellian velocity distribution corre-
sponding to an equilibrium temperature intermediate between, that of the
incoming flow and that of the solid surface; while the pressure and skin-
friction coefficients are considerably more complicated than in the specular
m.odel, they still have the form C, C(0) and C C](0) ;in other words,
they depend only on the orientation of a surface element with respect to the
free-stream direction and are indepen.dent of the geometry of the body
portion preceding that element.

3. Extremal problems in one independent variable. In the theory of
optimum aerodynamic shapes, certain functional forms involving one
independent variable and one or several dependent variables are of fre-
quent interest.

3.1. One dependent variable. A rather generM problem in one inde-
pendent vriable occurs whenever functional is to be extremized with re-
spect to the class of rcs y(x) which stisfy a set of isoperimetric con-
stmints. If the functionM and the isoperimetric constraints involve the sum.
of a line integrM and function of the end coordinates, the variational
problem is represented by the relations

(1)

() I

x]

(b) K=

f(x, y, 9) dx + g(x, y, x, y),

(x, y, )) dx + (x, y, x, y),

j- 1,...,p.

In these relations, x denotes the independen.t variable, y the dependent
variable, and ) the derivative dy/dx; the subscrit)ts i, f stand for the initial
and final points, respectively; the symbols f, g, ., ,. denote arbitrarily
specified functions of the arguments within the parentheses; I is the quan-
tity being extremized, and the symbols K. denote some prescribed con-
stants. The problem is to find, within the class of arcs y(x) which satisfy
the isoperimetric constraints (lb) and certain prescribed end conditions,
that particular arc which minimizes the functional (la).

Variational problems of this type arise whenever two requirements arc
met. First of all, the configuration must have special geometric properties
so that the body is described by a single curve; this is precisely the case with
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.t two-dimensional wing, a body of revolution, a conical body, and--more
generally--a homothetie body whose longitudinal contour or transversal
contour is arbitrarily prescribed. Second, the flow regime must be such that
the pressure and skin-friction coefficients are functions of, at most, the local
coordinates and the slope of the contour; this situation occurs in linearized
supersonic flow, Newtonian hypersonic flow, and free-molecular flow.

Since problems of type (1) are relatively simple from an analytical point
of view, they have been treated extensively in the literature. In particular,
two-dimensionM wings in linearized supersonic flow have been considered in
[2]-[4]; two-dimensional, axisymmetrie, and conical bodies in Newtonian
hypersonic flow have heen treated in [5]-[15]; and axisymmetrie bodies in
free-molecular flow have been investigated in [16]-[21]. In a typical ease, I
is the aerodynamic drag. The constants K. are: (a) the enclosed area, the
moment of inertia of the contour, and the moment of inertia of the enclosed
area of a two-dimensionM wing; (b) the wetted area and the volume of an
axisymmetrie body; or (e) the base area of a conical fuselage.

3.2. Several dependent variables. In the previous problem, there are one
independent variable and one dependent variable. An important generali-
zation arises whenever the functional being extremized involves several
dependent variables y,/c 1, n, and they are required to satisfy a
set of isoperimetric constraints and differential constraints. This problem,
called the Bolza problem, is the most general problem of the calculus of
variations in one independent variable and is represented by the relations

f(x, y, )) dx -t- g(x, y, xf y),

f(2)
Ki ,i(x, y, /) dx + i(x, y, xz, y), j 1, ..., p,

;(x, y, #) 0, j 1, ..., q,

which reduce to those characteristic of a Lagrange problem for g ,- 0
and those characteristic of a Mayer problem for f i 0.
Problems of type (2) arise in the study of two-dimensional or axisym-

metric bodies in nonlinearized supersonic flow, providing the aerodynamic
forces and the geometric constraints can be expressed as one-dimensional
integrals to be evaluated along the same reference line, whether the contour
of the body or a characteristic line of the flow field.
As an example of isentropic flow, consider the shock-free, supersonic ex-

pansion of a gas in a two-dimensional or axisymmetric nozzle of given
length. In this problem, the thrust, the mass flow, and the length can be
expressed as integrals of quantities evaluated along the left-going charac-
teristic line joining the axis of symmetry with the final point. The minimal
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problem is a Bolza problem, with this understanding" the quantity I is the
thrust; the constants K. are the mass flow and the length; and the con-
straints - 0 are the differential equations to be satisfied Mong a charac-
teristic line, namely, the direction and compatibility condition,s [22]-[27].

If compression processes are considered, that is, if shock waves are pre,
ent in the flow field, a more complicated situation arises. Nevertheless, i
the properties of the stream function are exploited, the optimum two-
dimensionM or axisymmetric forebody of given length can be studied within
the framework of the calculus of variations in one independent variable.
Once more, the drag, the mass flow, and the length can be expressed as
integrals of quantities evaluated along the right-going characteristic line
joining the shock wave with the final point. Therefore, this is a Bolza prob-
lem, vith this understanding" the quantity I is the drag; the constants K
are the mass flow and the length; and the constraints - 0 are the differen-
tial equations to be satisfied along a characteristic line, namely the direction
and compatibility conditions as well as the equation defining the stream
function distribution [28]-[29].

Problems of type (2) also arise in the study of two-dimensional or axi-
symmetrie bodies in Newtonian hypersonic flow, Newton-Busemann hyper-
sonic flow, and free-molecular flow whenever an inequality constraint is
imposed on the configuration and/or derivatives of higher order than the
first are present. At first glance, these problems do not seem to be covered
by the Bolza formulation since only first order derivatives are present in
(2) and inequality constraints are not even mentioned. However, by the
judicious use of auxiliary variables, each problem can be cow,vetted into a
Bolza problem.
As a first example, the slope of a configuration in Newtonian hypersonic

flow may be required to be nonnegative everywhere;that is, the inequality
constraint 9 ->- 0 is to be accounted for. This inequality constraint can be
converted into a differential constraint if the real auxiliary variable u de-
fined by the relationship 9 u" 0 is introduced [9]-[11].
As a second example, it is known that the aerodynamic drag of a slender,

two-dimensional or axisymmetrie body in Newton-Busemann hypersonic
flow depends functionally not only on the ordinate and the slope but also on
the curvature ) (see [30], [31]). In order to convert the associated varia-
tional problem into a Bolza problem, one has to introduce the auxiliary
variable u defined by the differential constraint ) u 0; because of the
relationship ) , the aerodynamic drag can then be expressed in terms
of y, u, it (see [32]).
As a third example, the pressure coefficient of a slender, two-dimensional

or axisymmetrie body in Newton-Busemann hypersonic flow may be re-
quired to be nonnegative everywhere. The conversion of the inequality
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constraint Cp(y, 7), ij) >= 0 into the corresponding equality constraint neces-
sary for the Bolza formulation is performed by introducing the auxiliary
variables u and v defined by the differential constraints u 0 and
Cp(y, u, ) v 0 (see [32]).
As a fourth example, a configuration in diffuse, free-molecular flow may

be designed in such a way that each molecule strikes the body only once.
This is the same as stating that the body is convex; that is, the inequal-
ity =< 0 must be satisfied everywhere. The conversion of this inequal-
ity constraint into the corresponding equality constraint necessary for
the Bolza formulation is performed by introducing the auxiliary variables
u and v defined by the differential constraints ) u 0 and ,t + v2= 0
(see [1, Chap. 28]).

4. xtremal problems in two independent variables. In the theory of
optimum aerodynamic shapes, certain functional forms involving two inde-
pendent variables and one or several dependent variables are of consider-
able interest.

4.1. One dependent variable. A rather general problem in two inde-
pendent variables occurs whenever a functional is to be extremized with
respect to the class of surfaces z(x, y) which satisfy a set of isoperimetric
constraints. If the functional and the isoperimetrie constraints involve the
sum of a surface integral and a line integral evaluated along the boundary
of the surface, the variational problem is represented by the relations

,P.

In the surface integrals, x and y are the independent variables; z denotes
the dependent variable, Zx the derivative Oz/Ox, and zy the derivative
Oz/Oy; and the symbol S denotes the domain of integration in the xy-plane.
In the line integrals, x is the independent variable; y and z denote the de-
pendent variables; and i denote the derivatives dy/dx and dz/dx; and the
symbol B denotes the boundary of the domain S. Also, the symbols f, g,, v denote arbitrarily specified functions of the arguments within the
parentheses; I is the quantity being extremized, and K. denote some pre-
scribed constants. The problem is to find, within the class of surfaces
z(x, y) which satisfy the isoperimetric constraints (3b) and certain pre-
scribed boundary conditions, that particular surface which minimizes the
functional (3a).
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Variational problems of this type arise whenever the flow reg,ime is such
that the. pressure and skin-friction coefficients are functions of, at most, the
local coordinates and the slopes of the surface defining the body. This situa-
tion occurs in certain problem.s of linearized supersonic flow, Newtonian
hypersonic flow, and free-molecular flow.
As an example, certain minimal properties of three-dimensionl wings in

linearized supersonic flow can be studied within the frame of the problems
described by (3) if use is made of the reverse flow theorems concerning a
thin, cambered wing in linearized supersonic flow [33], [34]. In a typical
case, I is the aerodynamic drag and the constants K. are the prescribed
values of the lift, the bending moment, and the pitching moment.
As another example, the minimum drag problem of a wing or a fuselage

in Newtonian hypersonic flow is a problem described by (3) (see [35], [36]).
Typically, I is the aerodynamic drag, and the constant K represents the
volume enclosed by a wing of given planform or a fuselage of given base
shape.

4.2. Several dependent variables. In the previous problem, there are two
independent variables and one dependent variable. An important generali-
zation arises whenever the functional being extremized involves several
dependent variables z,/c 1, n, and they are required to satisfy a
set of isoperimetric constraints and differential constraints within the do-
main of integration S and along the boundary B. This problem called the
Bolza problem, is the most general problem of the calculus of vriations in
two independent variables and is represented by the reltios

I= fff(x, y, z, z, z) dx dy f g(x, y, z 1, .i) dx,

,P,

k(x, y, z, z, z) 0 within S, j 1,...,q,

x(x, y, z, , i) 0 along B, j 1, ,r,

which reduce to those characteristic of a Lagrange problem for g ,. 0
and to those characteristic of a Mayer problem for f . 0.
Problems of type (4) may urise in the study of axisymmetric bodies in

]inearized or nonlinearized supersonic flow, whenever constraints are im-
posed not only on the length and the diameter but also o. integrated
quantities such as the wetted area or the volume.
As an example, consider the shock-free expansion of a gas i an axisym-

metric nozzle in nonlinearized supersonic flow, and assume that a general-
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ized isoperimetric constraint is imposed on the contour--so as to treat the
cases of given wetted area, weight, or linear combination of the wetted area
and the weight simultaneously. Specifically, one deals with the flow proper-
ties in a region S limited by a boundary B formed by the nozzle contour,
the right-going characteristic through the initial point, and the left-going
characteristic through the final point. After the thrust and the generalized
isoperimeric constraint are expressed as integrals of quantities evaluated
along the nozzle contour, the minimal problem can be treated as a Bolza
problem, with this understanding: the quantity I is the thrust; the constant
K is the value prescribed for the generalized isoperimetric constraint; the
constraints j 0 are the irrotationality condition and the continuity
equation to be satisfied at every point of the region S; and the constraints

x 0 are the tangency condition along the nozzle contour as well as the
direction and compatibility conditions along the remainder of the contour
B (see [37]).
As another example, consider the problem of finding the axisymmetric

body, forebody, or ducted forebody which minimizes the drag in linearized
supersonic flow for given constraints imposed on the length, the coordinates
of some intermediate point, and the volume. Although a rather different
formulation has been employed in the literature (see [38]-[50]; see also [1,
Chap. 7]), these problems can be studied as problems of the Bolza type.
Specifically, one deals with the flow properties in a region S limited by a
boundary B formed by the body contour, the left-going characteristic
through the initial point, and the right-going characteristic through the
final point. After the drag and the volume are expressed as integrals of
quantities evaluated along the body contour, the minimal problem can be
treated as a Bolza problem, with this understanding: the quantity I is the
drag; the constant K is the value prescribed for the volume; the constraints
j 0 are the irrotationality condition and the continuity equation to be
satisfied at every point of the region S; and the constraints x" 0 are the
tangency conditions along the body contour as well as the direction and
compatibility conditions along the remainder of the contour B.

7. Engineering trends and unsolved problems. Despite the variety of the
results already obtained, the theory of optimum aerodynamic shapes is only
at its beginning. There are interesting and useful variational problems in
one independent variable yet to be solved in every flow regime. An analo-
gous remark is even more appropriate for variational problems involving
two, three, or four independent variables, since these problems have only
occasionally been treated ia the literature.
Among the engineering problems which deserve to be investigated in the

near future, the following should be mentioned.
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In supersonic flow:
(a) the determination of the axisymmetric closed body, forebody, or ducted
forebody which minimizes the total drag (the sum of the pressure drag and
the friction drag) for a given volume; and
(b) the determination of three-dimensional wings, fuselages, and wing-
fuselage combinations which minimize the total drag under the condition
that the lift is given, the volume is given, and the boom intensity on the
ground does not exceed a prescribed limit.

.In hypersonic flow:
(a) the determination of the axisymmetric body which minimizes the sur-
face-integrated heat transfer rate; and
(b) the determination of three-dimensional wings, fuselages, and wing-
fuselage combinations which minimize the total drag for given conditions
imposed on the lift and the volume.

In free-molecular flow:
(a) the determination of three-dimensional shapes having minimum drag
for a given volume.

Mathematically speaking, some of these problems can be studied within
the framework of the Bolza problem in one independent variable; on the
other hand, more complex problems require an extension of the existing
methodology to the cases where the independent variables are two, three,
or four (see [51]-[53]; see also [1, Chap. 4]). These multi-dimensional prob-
lems occur whenever certain simplifying circumstances (e.g., two-dimen-
sional flow, axisymmetric flow, steady flow) are not invoked. Since only a
number of them are amenable to analytical solutions, it is necessary to de-
velop numerical techniques in order to solve the associated boundary
value problems.
The vista is expanding so rapidly on this promising application that it is

not difficult to predict that--providing sufficient research effort is expended
in this area and providing the present rate of progress is maintained in the
design of digital computing machines--the calculus of variations approach
will become a fundamental instrument in the design of optimum aero-
dynamic configurations.
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CONVEX PROGRAMMING AND OPTIMAL CONTROL*

A. A. GOLDSTEINf
Abstract. The use of convex programming to attack problems of optimal control

is not new, but it is becoming of increasing interest. Techniques of steepest descent
and gradient projection have been used by Balakrishnan [1], Goldstein [2], [3],
Neustadt [4], and Neustadt and Paiewonsky [5]. For the case of unbounded fuel-
optimal linear controls Neustadt [4] has shown that the problem may be cast into the
form of an infinite linear program. More recently Dantzig [7] and Van Slyke [8] have
obtained results in this direction for bounded linear controls. This paper will be con-
cerned with the case of fuel-optimal linear controls. This problem will be reduced
to the case of minimizing a convex function on E, and techniques of infinite convex
programming will be applied. In the important case when the thrust magnitude is
constrained, the convex function is continuously differentiable, and techniques of
steepest descent may be applied. This approach has already been suggested by
Neustadt and Paiewonsky [5].

1. We denote by H(A) the convex hull of A and by tiA the boundary of
A. Let A be a compact convex subset of En+l and let denote the support
function for A, i.e., () max {[a, ]" a A}. This function is defined
everywhere except at the origin and is convex, continuous, and positively
homogeneous. Let a() denote the support set for A at , i.e., all the members
of tiA such that [a, ] () for all a a(). Clearly a()) a() if
) ) 0 and a() is compact and convex. If A is strictly convex, i.e., tiA con-
tains no line segments, then a() is a singleton and the map a" -- a()
will be called the support mapping for A. With strict convexity it is easy to
prove that the support function is differentiable and its gradient is the
support mapping, i.e., V() a(). Furthermore a is continuous. For
the sake of completeness we shall prove these statements when needed in
the sequel. We now turn our attention to the following problems of mthe-
matical programming which arise from the linear problems of fuel-optimal
controls. The connection between the abstract geometrical setting presented
here and the problem of synthesis of fuel optimal controls may be found in
Meditch nd Neustadt [6].

Let 0 denote the (n -t- 1)-vector (0, 0, 1), and let K denote the
hyperplane {x E+I [0, x] 0}. The projection of x on K will be de-
noted by _x. Thus _x (xl, x, 0). Similarly if S EI, the pro-
jection of S on K will be denoted by _S. Let J denote the hyperplane
{(q, -, ,, -1)" , E}. In the following problems the set A is
described indirectly as follows. For each J a point of a() is given.
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Thus a solution of the linear programming problem of maximizing [, on
A is available. This solution is constructed with the aid of the "maximum
principle" of optimal control.

Problem 1. Let A be a compact convex subset of En1 with a tA and
a_ an interior point of A_. Assume that a a() for some in J. Given
a_, find .

Problem 2. As the above problem with the added hypothesis that A is
strictly convex. Find so that a a().
The algorithms to be presented generate sequences or subsequences

{k} converging to . We turn our attention first to Problem 1.
2. The following lemma [9, p. 257] will be helpful for the discussion of

Problem 1.
IEMMA. Let be a compact subset of En and b a continuous real valued

function on . Let F(x) max l[(, x] b(()" a }. I] there exists x
such that F(x) <= F(x) for all x, then there exists a set a, a
with t <_ n such that

(i) rain mx {[a,x]- b(a)} F(x) [a,z] b(a), 0 <= i <=
and

(ii) 0 H{a, a, a}.
Let f() () [a, ] maxe [a a0, ]. We are interested in the

problem of minimizing f on the hyperplane J because of the following.
TEOnEM. A point J minimizes f on J if and only if a a().
Proof. Assume a a(). Clearly f() _-> 0 and f() 0.
Assume minimizes f on J. Let t A a. Then f()
max {[a, ]. a }. The above lemma applies showing that there exists
set{a, a, a} in with/ _-< n + 2, f() [a, ], 1 __< i _-< k, and

0 belongs to Hl al, a}. Thus 0 _- },(a a), h _-> 0, and
1. We conclude that f() 0 and that furthermore a belongs to

H{a, a, a}. Sincef() mXae [a- a, ], a a(), 1 _<_ i <_- k,
while since a() is convex, a a().

Let A la()" J}. A is that piece of the boundary of A such
that the normals to A all have negative (n + 1)st components.
LMa. The set of ordered pairs (a-, an+)" a A} is a continuous convex

function.
Pro@ If the above set is not a function, then for some _a there are distinct

numbers a. and an+ Assume an+ > a,,+ Let (_a, a+) and
(a_, an+) a. There exists J such that a a() and [a, ] => [b,
for all b A. If b a’ then a+ _-< a+, a contradiction. That this
function is convex and continuous may be proved by a similar argument
using supporting hyperplanes.



144 A.A. GOLDSTEIN

3. The bove function will be nmed a+ the vMues re a+(a_). Let
b(a_ a_) a,+(a_). The restriction of f to J my be then written:

--* f() mx {[a, ] b(a). a A_ a_O} + an +1

Let F() f() a+. Since F and f have the same extremals we shall
minimize F to obtain a point such that a a(). Let _A a_.
Observe that 0 int(2) by the hypothesis of Problem 1. The following
algorithm will be employed [9, pp. 260, 263].

Algorithm. Let denote a bounded subset of E and a and b bounded
functions on 2. Set F(x) sup {[a, x] b(a)" a 2}. Assume there exists
a subset 20 of 2 such that 0 int(H{a- ( 20} ). At the ruth step of
the algorithm a set 2 is available. Choose x to minimize F(x)

sup {[a, x] b(a)" 2}. Select* a’ to mximize [a, x] b(a)
with a tolerance of 1Ira. Set 2+ (J {a’}.
THEOREM. The algorithm is effective in the sense that"

(i) F’(x") inf F(x),

(ii) the sequence {xm} has cluster points each of which minimize F.
Proof. See [9, p. 263].
To apply the algorithm to minimize the above function F two ingredients

are still necessary" the first, a method of determining x, and the second,
way of finding 0. The determination of x can be made via the algorithms
of [10] or vi linear programming. The set gt0 can sometimes be determined
by trial or inspection. Generally it is most easily obtained by a starting
procedure, for example, [9, p. 261]. In the sturting procedure the set 2 is
augmented by n + 1 points a0, "", a which contain 0 in the interior
of their convex hull. In the situation of minimizing F these points can be
taken to be the vertices of any simplex containing a_ in its interior. It is
not necessary that these vertices belong to the set _A. Numbers b(A),
0 =< i =< n, ure also chosen, hopefully sufficiently lurge so thut if
F(2) inf F(x), then [(, 2] b(a) < F(2).

If this condition is satisfied, the solution of the augmented system will
be the same as for the original system. Since F(x) => inf F(x) => F (x),
computations are terminated when F(x) F (x) is reasonably small.
If, however [a, x] b(a) >>- F’(x’) for some i, b(a) was not chosen
sufficiently large. The process must be repeated, for example, replacing
b(a) by 10 b(a). Since inf F(x) exists it is clear that eventually b(a)
will be sufficiently large so that the augmented equations do not influence
the value of inf F(x) or the point where the infimum is achieved.

4. We now turn our attention to Problem 2. We first observe that if A
The formula q(x) [a_, _x] may be used to calculate F(x), nd (’ a_(x") a_,

where a(x’O is any point of a(x’*).
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iS strictly convex, a(}) is a singleton. It follows that if minimizes F, then
solves Problem 2. We now consider the possibility of finding by the

method of steepest descent..
LEMMA. If A is strictly cowJex and compact in En, then the support mapping

for A is continuous and is the gradient of the support function.
Proof. Assume } --. }. By definition, [a(}), }] _>-. [a(}.), }] and [a(

-> [a(}), }]. Thus

[(), ] + [(,), ] => [(), ] => [(), ].

Hence
lim [(},), }i] [(}), }].

Since a(}) is the unique maximizer of [., }] every cluster point of {a(})}
is (}), showing that a is continuous at }.
We next show that given e > 0, there exists ti > 0 such that for all

Verify that

( + h) () [(), h] [( + h) (), ] [(), h]

+ [( + h), h]

and that [ + h, a() a( + h)] __<_ 0 and [-, a() a( + h)] -< 0,
so that

[h, () ( + h)] __< [, ( + h) ()] _< 0

[[h, (f) ( + h)]l _>- I[,-( + h) ()]l.
Finally

i( + h) () [(), h]l _-< 2 [I h [l" II () ( + h)[l.
Thus the continuity of a implies the differentiability of . Furthermore we
have Vf() a() a, and Vf() 0 if and only if a().
LEMMA. The set J" F( C} is bounded for arbitrary C.
Proof. F() max([a, f] b(a)’a 3 q0}. Let q

inf {[[ a [" a + 0 } and r sup {b(a)’a q0}. Because
qo int(d), q > 0. Given , for some a + a in 8d, a is a positive multiple
of . Hence F() [[.l q r. Therefore I (K + r)/q.
Thus F is convex, has compact convex level sets, a continuo adient,

and a unique nimizer. It follows that the techniques of [11] may be used
to generate a sequence {} converging to .
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ON STEEPEST DESCENT*

A. A. GOLDSTEIN
This paper continues studies initiated in [1] concerning iterative methods

of driving the gradient to 0. In [1] we were concerned with functions which
were twice differentiable; in this paper only first derivatives will be as-
sumed. Other results included are a fixed point theorem for "gradient"
operators and a simple proof of the classical method of steepest descent.

Let H be a Hilbert space, x0 an arbitrary point of H and f a functional
on H. Let S denote the level set of f at x0, viz., S Ix H:f(x) -< f(x0) }.
Let f’(x, denote the Frchet derivative of f at x, Vf(x) its representer
in H, and ix, y] the inner product of x and y. Set

A(x, p) f(x) f(x p(x) ),

(x,)(x,)
[vf(x), (x)]p

nd fix a, 0 < a =< 1/2. Here denotes a bounded mup from S to H, satisfy-
ing

[Vf(x), (x)] >__ 0,

such that given > 0, there exists > 0 for which

[Vf(x), (x)] < 8 implies f(x)ll < e.

For example, see Remark 4, below.
THEOREM 1. Assume that, on S, f is Fr$chet differentiable and bounded

below, and that Vf is uniformly continuous on S. Set x+ x when [Vf(x),
(x)] O. Otherwise choose p so that (r <= g(x p) <= 1 ( when g(x 1)
< (, orp 1 wheng(x, 1) >= a, and set x+ x- p(x). Then:
() Vf(x) converges to 0 while f x converges downward to a limit L.
(b) If the sequence [x} has cluster points, then every cluster point satisfies

Vf(z) O. Assume Vf has finitely many zeros on S, S is compact, and
{(x)} converges to O. Then the sequence {x converges.

(c) If S and f are convex, and q(x) Vf(x), then L inf {f(x) :x HI.
If [x} has wealc cluster points, then all such minimize f.
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Proof. (a) We have that

a(, z) [vf(), (x)] [Vf(x), (x)] + [vf() v/(x), (x)],

where lies on the open line segment joining x and x p(x). Thus

g(p, x) 1 -t- [Vf() Vf(x), (x)]
[V/(x), (x)]

Since Vfis continuous at x and I xll =< ptl(x)ll, g(0, x) 1. If
g(1, x) <: , then g, being continuous, takes on all values between 1 and i;
therefore there exist numbers p > 0 so that =< g(p, x) -< 1 . Set
Vf(xk) Vfk, (xk) k, and assume Vfk 0, and xk S. Thus

A(Xk, Pk) pkg(xk, pk)[Vfk, ’Pk] >= pkc3[Vfk, ’Pk] > O.

Thus f(xk+l) < f(xk) and xk+l S.
Assume [Vfk, k] does not converge to 0. This implies that there exist a

subsequenee {xk} and a number e > 0 such that [Vfk, k] ->_ e. It follows,
moreover, that {ok} is bounded away from 0. For if not, take a thinner sub-
sequence {ok}, if necessary, such that {ok} -- O. Since k is bounded on S,
{ll xk /k Ill -- 0. By the uniform continuity of Vf on S, it follows that
[Vf($k) Vf(xk), (xk)]} -- 0, and therefore g(pk, xk) -- 1, contradicting

that g(pk, xk) _-< 1 for all/c. There exists therefore a number q > 0 such
that ok >- q. Hence A(xk, 0k) >= qe, from which we may contradict the
hypothesis that f is bounded below. Thus [Vfk, Ck] 0, showing (a).

(b) Let z be a cluster point of the sequence [xkl. Since {Vfk} -- 0, we
have Vf(z) 0. Thus the number of roots of Vf(z) is equal to or greater
than the number of cluster points of {xk}. Therefore if Vf has a unique root
on S, then [xk} converges to it. If the roots of Vf are finite in number we
may suppose the cluster points of {xk} to be finite in number also. Let x be
a cluster point and let x be a closest neighboring cluster point to x. Set
e xl x. and let N(x) denote the sphere of radius e/3 centered at
x {xk UN(x) contains a finite number of points at most, say m. Since

xk+l xk converges to 0, we can choose k so that xk N(x) and
xk+ xk < e/3m. But this implies that lx} UN(x.) contains more

than m points, which is a contradiction. This contradiction persists unless
we suppose that {xk} has a unique cluster point.

(c) We need the inequality

f(y) >- f(x) + [Vf(x), y x]

which is valid for all x and y in S. By the convexity of f,

[f(x + t(y x)) f(x)] __< f(y) f(x) for [0,11.

By the differentiability of f,
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lim [f(x + t(y- x) --f)] [Vf(x), y- x].
t-0+

The remainder of the proof is s in [1].
Remarks.
1. The hypotheses on for the first part of (b) cn be stated" Vf nd

continuous on S, and [(x), y(x)] 0 for 11 x S, [(x), y(x)] 0 only
i v/(z) 0.

2. In (b), if the sequence x} hs an isolated cluster point, then it con-
verges.

3. The inequflity in the proof of (c) my sometimes be used in (b) for
terminating computations. We hve

/(z) > y(z) f(x) + [vf,, z ,] f(z) vf D,
where D is the diameter of S.

4. An example for is the following. Let H E nd let , 1 i n,
denote the rows of the identity mtrix. C5oose i0 so that

[Vf(x), ,:0] [Vf(x), ], 1 i n.

Set (x) Vf(x)[ 0 ;then

vf(x)
[t’(), (x)]

COOLMV. Let Q be a uniformly continuous nonlinear operator on H
which is the gradient ofa convex "potential" . Assume satisfies x /2,
0 p < 1. Then Q has a fixed point.

Proof. Define

’I:lus

f(x) 1/2Ix, x] (z).

and f is bounded below. Clearly, for every x0, the set S {x H:f(x)
_:-< f(x0)} is closed, convex and bounded, and Vf is uniformly continuous.
Applying (c) we obtain a point for which Vf(z) O. Thus z is a fixed
poit of Q.

Observe that if H is finite dimensional we need only assume Q continuous.
Bectmse the method of steepest descent is usually more laborious than

the algorithm above, it is not as practical. We shall discuss it below, how-
ever, because the proofs require slightly different techniques.

For simplicity we restrict our attention to gradient directions and to
sequences with cluster points. In the sequel assume S is bounded.
THEOREM 2 (Steepest descent). Assume Vf continuous on S. Choose p 0
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to minimize f(xk pVf(xk) set x/l x, pVf(x), and assume that
{xk} has clusler poinls. Then (b) of Theorem 1 may be asserted.

Proof. Let z be a cluster point of x,; clearly f(x) converges downward to
f(z). We shall show that Vf(z) 0. For suppose not, and let p0 :> 0 mini-
mize f(z pVf(z) ). The number p0 exists because S is bouded. Thus

f(z) f(z 0Vf(z)) + n

for some v > 0. But for every x,,,

f(x, poVf(x,)) f(z poVf(z) + (x,. z) + po(Vf(z) Vf(x)))

f(z poVf(z)) + [7.1’(), Xn Z + po(Vf(z), Vf(x,))],

with "between" z poVf(z) and x, poVf(x,). Let lx} be a subse-
quence converging to z. Then Vf(n) converges to Vf(z poT’f(z)) and
x, z -t-- po[Vf(z) Vf(x)] converges to 0. Hence for n sufficiently lrge,

f(x,, poVf(x,)) <= f(z poVf(z)) + q/2 --f(z)- /2.

Bu

f(z) < f(Xn p,Vf(x) -<_: f(x, poVf(x,)) <= f(z) ,/2,

a contradiction; hence Vf(z) 0.
A modified steepest descent due to H. Curry is more diiticult to prove.

Curry’s proof is geometric, intricate, and much abbreviated. We prove his
assertion below.
THEOnEM 3 (Curry [2]). Assume Vf continuous on S and choose p to be

the first zero of (f(x pTf(x) on the halfray x of(x) "p 0}. Assume

that the sequence {x} has cluster points. Then (b) of Theorem 1 can be as-
serted.

Proof. Similar to the above, set

Then

and

/f(x, p) f(x) f(x pVf(x)).

dAf
dp [ du1Vf(u),pp --[Vf(x- pVf(x), Vf(x)],

pg(x, p) f(x, ,)
vf(x)l"

Let be the least positive root of

(pg(x, p) )’ [Vf(x pVf(x) ), Vf(x)]
V/(x)[I
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Thus

[vf(z) (x), vf(x)](x, ) ii
Assume now Vf(xk) does not converge to 0. Then for some cluster point

z of {x}, f(z) 0. For ech x, consider the above integrnd s function
of p. The integrnd is 1 t p 0 nd 0 t p . We shll choose p0 so that
the integrnd I(x, p) . Tke subsequence x} which converges to z.
This sequence with its limit point is compact subset of S, so that Vf is
unifory continuous on this compctum, which we cll K. Therefore
there exist positive numbers q nd r such ttmt for 11 K, q < Vf(x) < r.
By the uniform continuity of Vf on K, given q/2, there exists such
that

vf(x)qVf(x pVf(x)) V/(x)I[ < < 2

whenever p Vf(x) < , for ll x K. Choose p0 6/r. Then if p

we have p[Vf(x) < . Thus if p p0 nd x K, Vf(x
pVf(x)) Vf(x) < Vf(x) /2. Thus

1>, vf(x) vf(x- pvf(x))-vf(x),]

vf(x)111 vf(x ovf()) V(x), vf(x)II

f(x) ’11 f(x)11
which proves that if x K nd p po, I(x, p) > nd therefore p0

It follows that

and hus f(z, o) qoo/2, eongradiegig ha f is bounded below on K.

ewledgment. I am indebted o Professor Alexander Osrowski for
suggesting o me hat {x} in Theorem 1 converges if Vf has finitely many

REFERENCES

[1] A. A. GOLDSTEIN, Minimizing functionals on Hilbert space, Computer Methods in
Optimization Problems, Academic Press, New York, 1964, pp. 159-165.

[2] H. ConRv, The method of steepest descent for non-linear minimization problems,
Quart. Appl. Math., 2 (1944), pp. 258-26]..



&SIAM CONTIOI,

Ser. A, Vol. 3, No.
Printed in U.S.A., 1965

OPTIMAL CONTROL PROBLEMS IN BANACH SPACES*

A. V. BALAKRISHNAN

1. Introduction. This paper is concerned with a systematic study of
class of control problems in which the state and input or control variables
are allowed to range in Banaeh spaces. Specifically, the state equation is
of the form

(1.1) 2(t) f(x(t), u(t), t),

where for each t, u(t) and x(t) are Banach space valued. This exteusio to
infinite dimensions is more than of purely mathematical interest. In the
first place, control problems involving distributed parameter systems where
the state dynamics are described by partial differential equations are c’o-

veniently formulated in this way. Secondly, stochastic control problems
can also be handled in this way. Thus, the study of control problems in
Banach spaces has the merit, of providing a measure of unification for
wide range of problems.
The Banach spaces in what follows will always be function spaces. In

the case of partial differential equations, the spaces will usually bc
spaces (with respect to Lebesgue measure) of functions defined on some
region R, not, necessarily bounded, of a Euclidean space of one or more
dimensions. For example, let the zero-input equation be the partial differen-
tial equation,

(1.2) Ox(t, r) a(t, r) Ox(t’ r)
Ot 0-----:---- r R interval in

We formulate this as an abstrae Cauehy problem in the chosen Banach
space in which the functions x(t, r) are required to lie for each t, and write
i as

(1.3) 2(t) A(t)x(t),

where A (t) is identified as the differential operator with the given boundary
conditions, and is thus unbounded in general. It may be noted that the
derivatives in (1.1) and (1.3) are taken in the "strong" sense, that is, in
the topology of the Banach space involved. In the case of stochastic prob-

* Received by the editors February 19, 1965, and in revised form March 10, 1965.
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700-65.
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lems we have a probability measure space (ft, t, t) in the usual notation,
2 being the whole space, the Borel field, and the probability measure.
The Banaeh space here will be an L, space, L,(a, t, ). Again we note
that "strong" limits will now be in the topology of the chosen L space.

Since we are thinking of partial differential equations, the almost ex-
clusive attention to linear problems needs no particular apology. For the
linear ease we shall take the state-input equation as

(1.4) 2(t) f(x(t), u(t), t) A(t)x(t) - B(t)u(t) + z(t),

where x(t), z(t) are elements of a Banach space X1 for each t;
u(l), the control, is an element of another Banach space X2 for each t;
A (t), B(t) are linear operators for each t;
B(t) is a linear bounded transformation mapping X2 into X1
and A (t) is a closed (and not necessarily bounded) operator with domain
dense in X and range in XI. The fact that A (t) is unbounded means in par-
ticular that the right side of (1.4) is not continuous in x(t), let alone differ-
entiable.
The first question of course is that of existence and uniqueness of solu-

tions for (1.4). The homogeneous equation (1.3) does not necessarily
have unique solutions without additional conditions on A (t). First let us
consider the time-invariant case so that we have

(1.5) 2(t) Ax(t).

Then we may invoke the theory of semigroups of linear operators [1].
Indeed, Phillips [2] has shown that a necessary and sufficient condition
for (1.5) to have a unique solution in (0, for each initial value x(0)
in the domain A (with nonvacuous resolvent set,) such that

(1.6) x(t) x(O) -- o as t--0+

is that A be the infinitesimal generator of a semigroup T(t) of linear
bounded transformations over X which is strongly continuous at the origin..
The solution itself is then given by

(1.7)

where of course

and

x(t) T(t)x(O),

T(t -- s) T(t)T(s), T(O) I,

T(t)x AT(t)x T(t)Ax,
dt

for x D(A), where D(A) denotes the domain of A. Necessary and suf-



154 A.V. BALAKRISHNAN

ficient conditions for a closed operator with dense domain to be an in-
finitesimal generator of such a semigroup are given in [1]. We state one
such result [1] due to Feller-Miyadera-Phillips: a necessary and sufficient
condition for a closed linear operator with dense domain to generate a
strongly continuous semigroup is that (hi A) have a bounded inverse
R(h, A) for each h > 0, with

(1.8) R(, A )n M(, oo) -’, , > o,

for some M, 0 > 0 and all n.
The formal solution of

(1.9) 2(t) Ax(t) + v(t),

by analogy with the finite dimensional case, is

P

(1.10) x(t) T(t)x(O) - Jo T(t- s)v(s) ds.

However, we need to postulate some additional conditions before (1.10)
is the actual solution to (1.9).
THEOREM 1.1. Let A be the infinitesimal generator of a strongly continuous

semigroup T(t). Let v(t) be strongly measurable and Bochner integrable in
every finite interval in (0, ). Further let v(t) D(A) for almost every
and let Av(t) be integrable in each finite interval in (0, ). Then, for
every > 0 and for each initial value x(O) in D(A), (1.10) is the unique
solution of 1.9) satisfying (1.6).

Proof. Since v(t) is strongly measurable, and v(t) D(A) almost every-
where, Av(t) is also strongly measurable. From the assumed integrability
of Av(t) I1, it follows that Av(t) is Bochner integrable in each finite inter-
val. Now the integral in (1.10) is a Bochner integral. Moreover,
x(t - A) x(t) T(t + A) T(t) x(O)

A A

1 ftt+a f0 ( )+- T(t + A- s)v(s) ds + T(t-- s) T(A) --I. v(s) ds.
A

The first term tends to A T(t)x(0) as A -- 0. Because v (t) is Bochner in-
tegrable, the second term goes to v(t) almost everywhere in t. In the third
term, the integrand is bounded in norm by

since

const. Av(s)II,

I(T(A)A-- I)v(s) -n T(()Av(s) da <- M AV(s) I[;
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and hence the third term converges to

fo T(t- s)Av(s) ds.

But since A is closed linear, this implies that the third term tends to

A fo T(t- s)v(s) ds.

In other words, (1.9) is satisfied for almost all t, and iu particular for every
point of continuity of v(t).
The uniqueness of the solution is as usual a trivial consequence of the

uniqueness of the solution to the homogeneous equation. Whether the
condition that Av(t) be Bochner integrable is necessary is not clear. How-
ever, it is possible to show that if (1.10) is a solution of (1.9) for every t,
then v(t) must be in the domain of A almost everywhere in t. The situation
is more complicated when A(t) depends on t. The homogeneous equation

(1.11) 2(t) A (t)x(t)

has been called the "evolution equation". No necessary conditions for
existence and uniqueness of solutions are available, in general, although a
variety of sufficient conditions have been given [3]. One such condition
of interest to us is the following. Let

(1.12) A(t) A -{- F(t),

where A is the infinitesimal generator of a strongly continuous semigroup
and F(t) is a linear bounded transformation for each and is strongly con-
tinuous in on each finite interval in (0, ). Then (1.11) has a solution
given by

(1.13) x(t) S(t, (r)x(a), >= (, x(() D(A),

where S(t, ) is a two-parameter family of endomorphisms, >= 0,
and such that

(t, )(, ) z(t, ),
(1.14)

s(0, 0) I.

From (1.12) it follows that A(t) is a closed linear operator for each and
that

D D(A(t))

is dense in X. This would appear to be a minimal condition on A(t). If
we assume that (1.11) has a unique solution with the requisite continuity
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properties, then the solution must be given by (1.13) with S(t, a) as in
(1.14). The formal solution of the nonhomogeneous equation

2(t) A(t)x(t) -- v(t)

now becomes for x() D,

(1.15) x(t) S(t, z)x(z) -- J S(t, ()v(z) do-.

The analogue of Theorem 1.1 now holds if we postulate that v(t) nd

(1.16) A(t)S(t, )v(t), >=_ ,
are Bochner integrable in each finite interval in (, ).
The solution to (1.4) can now be obtained from (1.10) and (1.15)

under the appropriate sufficiency conditions on A(t) and B(t). In what
follows, we shall be interested primarily in the time-invariant case. In
particular, we shall suppose that

(1.17) B(t) B,

where B is a bounded linear transformation mapping X into D, the domain
of A. Then ABu(t) is Bochner integrable since u(t) has this property and
AB is linear and bounded.

2. Optimal control problems. Of the endless variety of finite-dimen-
sional control problems that can be extended into the present setting we
shall discuss two main classesthe so-called final-value problem and the
time-optimal problem, and some variations thereon.

Final value problem. This is the problem of minimizing some prescribed
functional g(x(T)) of the final state at a fixed terminal time T, starting
from a given initial state x(0) at time zero, with constraints on the control
u(t). In this case it is convenient to introduce the space B{T; X} of
strongly measurable functions u(t), 0 =< _-< T, with range in X such that

T

fo u(t) II" dt < 1 <= <-P

and constrain the control function u(t) to be in some subset C therein.
Time-optimal problem. Let x, x: be two given states in X1. A system is

controllable* if it is possible to "transfer" Xl to x in some time interval;
that is, to make

x(O) xl x( T)

with the control constrained to be in C. Thus controllability depends on

* The problem of determining conditions for controllability is still largely open
in this setting.
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xl, x2, and C. The time optimal problem is to find the control that yields
the minimum T.

Before proceeding to a detailed examination of these problems we shall
first collect certain general results pertaining to constrained extremum
problems for funetionals on Banaeh spaces. All funetionals will be real
valued.
THEOREM 2.1. Let X be a reflexive Banach space. Let g(. be a real-valued

continuous functional Which is convex on a closed bounded convex subset
C of X. Then there exists an element Uo in C such that

(2.1) inf g(u) g(uo).

Proof. Let {x} be a sequence in C such that g(x,) is monotone decreasing
(noninereasing) and

lira g(x,) inf g(x).
xEC

Since C is bounded, we choose a weakly convergent subsequence, renutn-

bered as {Xn} again, whose limit is x0. Since C is convex and closed, x0
belongs to C. Now a continuous convex functional is weakly lower semi-
continuous, so that

lim g(x,) lira g(x,) >= g(xo),

and thus x0 is the extremal element sought.
If X is uniformly convex, then there exists a unique element of minimal

norm at which the infimum is attained. We note that the spaces B,( T, X.)
are uniformly convex for p > 1, provided X is.
In many problems the convex set is actually characterized by convex

inequalities, and we shall need a specialization of Theorem 2.1 in terms of
the inequality conditions. For finite-dimensional versions, see [4],..[5].
THEOREM 2.2. Let X be a Banach space and let C be a subset of X charac-

terized by the functional inequalities,

(2.2) f(x) <- O, i 1,..., n,

where fi(" is continuous and convex on X. Let fo(") be a continuous convex

functional on X and

fo(xo) inf fo(x).
x-C C

Then there exist constants o i O, 1, n, such that

* A reM-valued functional f(-) is said to be weakly lower semi-continuous, if
whenever x converges weakly to x,

f(x) <= lira f(x).
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and

a >_- 0, a > 0,

(2.3) inf ’ afi(x) aifi(xo).

Proo]. Let T(x) be the mapping of X into En+l defined by

T(x) {f0(x) fo(xo), fl(x) f(xo), fn(x) f(x0)}.
Let E be the subset in E+ defined by

E- {Y] Y >= T(x) for some x in X}.

We note that E is convex. Indeed, if Y, Y2 E, then we know that for
some x, x2 in X,

Y1 >= T(x), Y >= T(x).

But since f(. are convex, T(x) is convex so that

aY1 -- (,1- a)Y >= aT(x) if- (1- a)T(x) >= T(ax-- (1- a)x2),

showing that E is convex. Moreover E has interior points since the f(-)
are assumed continuous. Next let us note that the origin in E.+ is a bound-
ary point of E. For let Y be negative (i.e., all the coordinates of Y are
negative),

Y {-]y,]].

Then suppose there is a point z in X such that

-]y >- f,(z) f(xo), i 0,... n.

This would mean that

f(x) < f(xo) <= O, i 1,..., n,

fo(x) < fo(xo),

which is a contradiction. Clearly any positive Y is in E. Hence we can find a
supporting plane for E through the origin or, in other words, constants a
not all zero such that

o,(y) >= O, {y} Y E.

Hence also_
ill l - f(x) f(x0)] >= O, for arbitrary I/, I.
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Therefore ai ->_ 0, i 0,..., n, or,

>=
as required.
When the functions fi(x) are not convex, there may not be a global

extremum. However, a version of Theorem 2.2 still holds, since this is
primarily a local statement. Thus we have (see [4] for finite dimensional
versions)"
THEOREM 2.3. Let C be the subset of a Banach space X characterized by n

functional inequalities,

C Ix X f(x) <= O, i- 1,..., n],

where f(. are given continuous functionals. Let Xo be in C and such that, for
the continuous functional fo(x) on X,

inf fo(x) fo(xo).
xEC

Suppose the functionals are all Gateaux differentiable on a "c-star" about
Xo. Then we can find {a}

a >- O, o > O,

such that

(2.4) ai6f(xo ;h) __> 0

for every h such that Xo -- h is in the c-star about Xo, where f(Xo h) denotes
the Gateaux differential of fi at Xo

Proof. The proof is quite similar to that of the previous theorem. For
any h such that x0 -- h is in the c-star about Xo, let us define the function
T(h) with values in En+1 by

T(h) {tiff(x0 ;h)}, i=O,...,n.

Let E be the set in En+l such that

E [Y E,+ll Y >= T(h) for some h].

Then E is clearly convex; it is actually a cone ("derived cone" in the termi-
nology of Hestenes [5]). Next by taking h to be the zero element of X,
we see that the origin of E+1 is in E. Also, let Y be any negative vector,

Then Y cannot be in E. Indeed, suppose
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--I Yi >= fi(xo ;h).

Then since, for 0 < " < 1,

f(xo + h) y(Xo ;h),
it follows that for " sufficiently small

f(xo + h) < f(xo) <= O, i 1,..., n,

and

fo(xo + h) < fo(xo),

which is impossible. As in Theorem 2.2, we note that E has interior points
and the origin is a boundary point. Hence we can find a supporting plane
through the origin. The rest of the argument, proceeds as in Theorem 2.2.
COItOLARY. Suppose f(. are all Frechet differentiable in some sphere

about xo. Let Vf(x0) denote the gradient so that the Frechet derivative

f(xo, h) Vf(xo)(h), Vf,(x0) X*.
Then we can find constants ai such that Oi - O, EO O > O, and

(2.5) vf, (xo) o.

Proof. From the theorem it follows that for the a therein,

,aiVfi(xo)(h) >= 0 for every h in X,

so that

25 .VL(x0) 0,

as required.
A simple case. The simplest case which is of interest in the applications

arises when we set

(2.6) fo(u) Lu y ][,

where L is a linear bounded operator mapping X into X and y is a fixed
nonzero element of X. Moreover we shall take X and X to be Hilbert
spaces and denote them by H and H, respectively, to indicate this. We
shall specify the constraint to be

(2.7) f(u) -l] u II- M, M > O.

We can apply Theorems 2.1 and 2.2 since A(" and A(" are continuous
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and convex. Hence a (global) minimum exists. Let one of these (if there is
more than one) be denoted u0. Then we can find numbers Xo, 1 such that

x,,,,(u) + x() ofo(o) + x(Uo),

0 0 1, 1 0,

Or

(2.8) Ao]]Lu0-- y]l +h[u0 hollLu- y]] +A[u, u H:,....

Clearly, 0 cannot be zero, since u0 cannot be zero, y being nonzero. Hence
fo(uo) is zero if and only if h is zero. Again let us note that f0(- and f(.
are now ctually Frechet differentiuble, so that

h0 (L*Lu0- L’y) + hlU0 0.
(0) o

It then follows that, for some k0 0,

(2.9) L*Luo L*y + koUo O.

If k0 0, the minimum is actually zero. It my be noted that if k0 is
positive, then

(2.10) u0 (L*L - 0/)-lL*y,

since L L is nonnegtive nd self-adjoint, so that (L*L + koI) hs a
bounded inverse. Again, for k0 positive,

1 L*(Luo- y)0

so that u0 is in the range of L*. Thus the u0 given by this formul is uto-
ticlly the unique element of minimal norm that minimizes (2.6) subject
to (2.7). When k0 is zero, it is obvious that we cn take ny sequence of
positive numbers n whose limit is zero nd let (see (2.9))

u (L*L + kI)-L*y
(2.11)

(.L*L + nl)-IL*LUo.

Since L*L is self-adjoint nd nonnegtive, it follows from this that u
converges to the projection of u0 on the orthogonl complement of the
null space of L*L. If we call this projection v0, we note that v0 is the unique
element of minimal norm that minimizes (2.6) subject to (2.7). Als0,
of course

lira f0(u) fo(uo) f0(,0).
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This generalizes the results in [6] and [7]. In particular the operator L is
not required to be compact.

Retaining (2.6) we may generalize (2.7) so that fl (’) is now the support
function of a closed bounded convex set C (with the origin as an interior
point) which is smooth enough so that fl(" is Frechet differentiable.
Then (2.9) generalizes to

(2.12) L*Luo + /c0Vfl(u0) L’y,
which is a nonlinear equation when It0 is positive. If ]co is zero, we can, as
before, use the sequence u determined by

L Lu + kVf(Un) L’y, 0 <= ]Ca --- O.

We note parenthetically that Vf(. is a "monotone" operator, and so
indeed is L*L -t- /c0Vf (.) in (2.12). We have already proved the existence
of a unique solution, for (2.12), although this could be established directly
as in [8], where some related considerations are also to be found. While
iteration methods for solving (2.12) are of interest, our concern here is
with the more difficult problem of producing a minimizing sequence for
(2.6) and an algorithm for this will be given later.

3. Final value problems. Let us now return to a detailed consideration
of a class of final value problems. Let the state equation be given by (1.4).
Let us also assume that the system is time-invariant since extensions to
time-varying systems that have unique solutions can be readily made.
Thus we assume that the state equation is

(3.1) 4(t) Ax(t) - Bu(t),

where, for each t, the state x(t) is in X and the control u(t) is in. X:, A
is the infinitesimM generator of a strongly continuous semigroup S(t),
and B maps X: into the domain of A. We shall assume that X and X
are reflexive spaces. We shall consider the final value problem of minimiz-
ing for fixed T, y"

(3.2) IIx(T) y]l, y X,

starting with the known initial state x(0) at time zero, with the constraint
on the control described as follows" consider the space B[X: (0, T)]
(shortened to B[X:; T] later on) of strongly measurable functions u(t)
with range in X: such that

T

u(t) ’dt < for some > 1, <: .P P

Then the control u(. is subject to being i a closed bounded cove set
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C in B[X: T]. For example, C may consist of all u(. ) such that

(3.3) ess sup 1[ u(t) _-< M < ,
O<=t<=T

or such that
T

(3.4) llu(t) ’ dt <- M < , p >= p.

Note that if C is defined by (3.3), the origin in B[X2 T] is not an in-
terior point of C. To handle this problem we can write, following (1.10),

T

(3.5) x(T) fo S(T ()Bu() d( + S(T)x(O).

If we define the mapping
T

L(T)u Jo S(T ()Bu(z) dz,

from B[X2 T] into X1, then L(T) is clearly linear bounded. Setting

(3.6) fo(u) L(T)u + S(T)x(O) y }1,
we note that f0(" is a continuous convex functional on B[X T]. Hence
by Theorem 2.1, we are assured of a global minimum subject to u(. being
in C. In fact, we can find a nonnegative constant It0 such that, for the mini-
mizing element u0,

fo(uo) -t- kof(uo) <-fo(uo) + lof(u)
(3.7)

for every u in B[X2; T],

and assuming Frechet differentiability for f(. ),

(3.8) Vfo(u0) + 0vf(u0) o,
where Vfo(. and Vfi(-) range over Bq[X T], lip + 1/q 1. Next let us
note that the set L(T)C is also convex and bounded whenever C is bounded.
Minimization of (3.6) can then be viewed as minimizing the distance (in
X) from y S(T)x(O) to L(T)C. Thus we know that there is an
element y0 in the closure of L(T)C in X such that

min[ly- [I IlYo- yll too.

But since we know that Uo already provides a global minimum, we have

Yo L( T)uo

Again suppose k0 in (3.7) is positive. From (3.7) it follows that if ]co is
positive, then y0 is a bounding point of L( T)C. Then we can find a support-
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ing plane through y0 and corresponding (non,zero) functionM x* in XI*
such that

Re [x*(y) x*(yo)] <= O, y L(T)C,

tnd

Re Ix* (?) Re Ix* (yo) ].

We shM1, for convenience in what follows, drop the Re in such inequMities.
it is clear that we can, by a suitable multiplying factor, arrange matters
so that

x (y) < () -mo=x (yo), y L(T)C.

Now, let y* L(T)*z*, so that

(3.9) y* B[X*; T], 1/p + 1/q 1.

Then we have

(3.10) y*(u)
It follows from this that u0 is
further, let us assume that X s a Hilbert spce. Then

T

y*(u)

where

y () *( ) x,

nd (3.10) becomes
T T

(.) d [*(), u()l J0 [*()’ u0()] , u c.

In special cases, (3.11) is enough to determine u0(-). Thus let us con-
sider the case where C is characterized by (3.3). Let us define

(3.12) v() Mv*()
v*()1’

() # 0.

Then v(. belongs to C, and, in fact, is on the boundary of C. By the
usuM limiting arguments, it is readily seen that

(3.13) uo() v(), y*() # o.
If C is characterized by (3.4), we set

y*()(3.14) w()
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Then

IfT ,lp’/q’k M y*(o-)II

Ilw(z) dz M.

Now for u(-) in C defined by (3.4),

But

y*(u) <= M Ifo
r

Ifo
T

1llq’

y*(w) M do-

and there is at most one element in C satisfying (3.10). Hence,

(3.15) u,(a) w(a).

We further note that since

y ((r) B*S(T- o)*x*,
y*(a) is actually continuous in , and for any x in X,

y ((r)(x) (S(T o’)Bx),

d
d--- y (o-) (x) -x*fAS(T o’)Bx]

A*x*[S T o’) Bx]

--A y ()(z), 0 =< =< T,

*(or y ) is actually weakly differentiable and indeed satisfies the differen-
tial equation (3.1). This is one direction of generalization of the Pontryagin
maximum principle. It is unlikely that results similar to (3.14) and (3.15)
can be obtained when X is not a Hilbert space or when C is allowed to be
an arbitrary closed bounded convex set. It is, however, of interest to con-
sider a case where C is no longer bounded. Let C in By[X2 T] be charac-
terized by

T

(3.17) f0 u()It M < , p > 1,
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and let us continue to assume that X2 is a Hilbert space. We note that the
origin is an interior point of C. Let S, denote the sphere of radius n, and let

Then, since C, is closed, bounded, and convex, there is a unique element,
which we shall denote by u,, that provides the minimum of (3.6) under
the constraint that u C,. We note next that

(3.18) lim fo(u,,) inf fo(u),
uEC

and fo(u,,) is a monotone decreasing sequence. The sequence {Un} need not
converge even weakly, and there may not be an element in C such that
the infimum in (3.18) is attained. It is clear, in fact, that a necessary and
sufficient condition for the existence of a minimizing element in C is that

The problem of finding u can be handled by setting
T

f(u) fo u(a) do M,

A(u) u n,

and noting that the minimum must satisfy

fo(u) + ffl(u) + ),ale(u) >-fo(u,,) + ,f(u,,) + k2f2(Un)

It may be noted, however, that fi(. is no longer Frechet differentiable
so that (2.5) does not hold. However, (3.10) still holds, provided L(T)u,,
is a bounding point of L(T)C,.
When C is characterized by (3.17) we can also proceed in a slightly

different manner, if we can assume that X2 is a Hilbert space. For this we
note that C is a closed bounded convex subset of B[X: T]. But this space
is no longer reflexive; hence Theorem 2.1 does not apply. However, follow-
ing (3.18), let

lim f0(uk) inf f0(u).

Then since

(3.19) fo(uk)

where now denotes the norm in X1, it follows that, if X is reflexive,
for any x* in XI*,
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where

T

x*[L(T)uk] fo [B*S(T z)*x*, uk(z)]

y o-) B*S(T- z)*x

is actually continuous in z in the norm of X2. From the Helly theorem ex-
tended to BV[X2; T], the space of functions of (strong) bounded varia-
tion, we note that, given any subsequence of uk}, we can find a further
subsequence {u,} such that

T T

(3.20) f0 [B*S(T z)*x*, u(z)] dz --+ fo [B*S(T z)*x*, du0(a)],

where u0(. is now an element of BV[X2 T]. In other words, we consider
the mapping

T

S(T z)B d5(z) L(T),

where (.) is an element of BV[X2; T], and note that L(T) is linear
bounded. Moreover C is a convex, closed bounded subset of BV[X2; T]
and L(T)C is convex and bounded. Hence there is an element y0 in the
closure of L(T)C such that

But from (3.19),

lly0- 11 inflly-- Tll m0.

and from (3.20) it follows that for the subsequence uk, for any x* in XI*,
lira x*[/(V)u, ] x*[L(T)u0 ],

and hence

L( T)uo lim[L(V)u- yo .
It follows then that

mo n( T)uo

and this is independent of what subsequence of {u,} we chose. If is not
an interior point of L(T)C, we also have that for some x* in X*,

(a.l) [B*S( )%*, ()] d N [B*S( )%*,
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U C. If in addition X1 is reflexive and uniformly convex, the yo is
unique and

(3.22) lira L( T)un L( T)uo yo

"Feedback" solutions. So far we have been concerned with the determina-
tion of the control u(a) as a solution of functional equations or inequl-
tms. many problems it is desirable to obtain "feedback" cotrol; that
is, with reference to (3.1), we want to determine u(a) as ’i’unction
of x(z). The question of whether this is possible in every case is largely
unsettled even in the classical finite-dimensional state space problems.
Here we shall consider a specific class of problems in which (3.1) is (slightly
generalized to)

(3.23) 2(t) Ax(t) -- Bu(t) + Z(t),

where Z(t) is in the domain of A for each and Z(t) and AZ(t) are Bochner
integrable on finite intervals. We shall assume that both X and X arc
Hilbert spaces and that we want to minimize (3.2) subject to the contro|

u(. being in B_[X. T] and such that
r

12(3.24) u(t)l dt <= M < .
We have seen that the solution u0(. is then given by (2.12) which, now
reds

(L*(T)L(T) -+- lcoI)uo(a) L(T)*9,
where

j y S(T)x(O) fo
r

(T )Z() d.

First let us assume that/co is positive. Then we kow that

Uo(a) L(T)*yo
for some y0 in X1 where y0 satisfies

(3.26) L(T)L*(T)yo
For each let us define a linear bounded operator R(t) by

R(t)x S(T- z)BB*S(T- a)*x o<=t_<__T.

Then

Uo(z) B*S(T- z)*y L(T)*[R(T) + k(,ll:q
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We shall now show that we can find a linear bounded operator O(t) for
each t, 0 = -<__ T, such that

(3.28) uo(t) O(t) y- S(T- t)x(t) S(T- r)g(r) d(r

where, in fact,

(3.29) O(t) B*S(T t)*[R(T) R(t) -k koI]-1,
where the inverse indicated is a linear bounded operator. It is clear that
(3.28) provides the "feedback" control sought, in that it depends only on

x(t) and other given or a priori known data. In fact the term in square
brackets in (3.28) is the difference between the "target" y and what the
state at T would be if there were no control after t. To prove (3.28), let
x(t) be the unique solution of

2(t) Ax(t) -k Buo(t) -k Z(t),

where u0(t) is given by (3.27). Then

x(t) S(t)x(O) + .f. S(t- )BB*S(T- i’)*[R(T) + lcoI]-l d

+ Jo (t- )z() ,
so that in (3.28), the quantity in square brackets equals

S(T)x(O) fo S(T )BB*S(T )*[R (T) -F k0 I]-l-y d-Y

f
Jo S(T- r)Z(r) dr S(T- a)Z(z)

I] yR(t)[R(T) + ko -1_

(R(T) R(t) + koI)(R(T) -+- koI)-l,
so that

O(t) [y- S(T- t)x(t)
Jt

S(T r)Z(r) dz

L(t)(R(T) R(t) -b" koI)[R(T) -t-
B*S T t) *JR (T) -+-/0 -1I] y uo(t),

as required. It may be noted that

(3.30) JR(T) R(t)]x fr S(T z)BB*S(T )*x d(r,
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SO that (R(T) R(t)) is self-adjoint and nonnegative for 0 =< < T.
When/0 is zero, we have already noted that u0(t) is the limit in B2[X T]
of elements of the form

L( T)*[R(T) + ]cI]-1, 0 -<_ k. --* 0;

and hence the feedback solution can be written as the limit of

where

u,(t) On(t) y- S(T- t)xn(t) S(T- z)Z(z) dzl,
O(t)[R(T) R(t) -t- k,I] B*S(T t)*,

2,(t) Ax,(t) + Bu,(t) -t- Z(t),

Also, for k0 positive,

2(t) Ax(t) -- BO(t) [
[.
y- S(T- t)x(t) S(T- z)Z(z) dz

-t- Z(t) [A BO(t)S(T- t)]x(t) + BO(t)y

BO(t) S(T- a)Z(a) da -t- Z(t)

has a unique solution for each initial value x(0).
The stochastic version of this problem is of interest since the feedback

aspect becomes an essential in the formulation of the problem. For ex-
ample, if in (3.23) the term Z(t) is identified as "noise", then the control
cannot contain the third term in (3.28) and in fact has to be determined
as operations on the "observed data" x(t) alone. To illustrate the con-
siderations involved, we shall go into some detail on a specific example of
a stochastic control problem where the state equation is givenby

(3.32) (t) A(t) -t- Bu(t),

where (t) is an n X 1 matrix, A is an n X n matrix, B is an n X m matrix
and u(t) is an m X 1 matrix, and

(3.33) y(t) (t) -- n(t)

is observed, where n(t) is random noise (n-dimensional stochastic process)
with zero mean. We may assume that ’(0) is a random variable with
known mean. Similarly we may assume that the desired state at time T is
also a random variable but with known mean y. The optimal control has
,to be dependent on the observed variable y(t) and hence is also random.
The constraints take the form
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r

E(u(t)) dt <= M1,

r
Var [u(t)] dt <= M2

and we want to minimize

(3.34) E II " (T) II .
We shall show that the optimal control can be expressed as operations on
y(t). First of all, substituting (3.33) into (3.32) we obtain, assuming n(t)
is differentiable,

(3.35) /(t) Ay(t) + Bu(t) + ((t) An(t)),

and the similarity to (3.23) is obvious. To make it more precise, let us
introduce the space X1 as

XI L2[, B, ],

the space of vector random variables of n dimensions with finite second
moments in which the random variables n(t), i’, ’(0) are defined. We also
introduce

X. L.’[2, B, t],

the space of vector random variables of m dimensions with finite second
moment defined on the same measure space. To avoid confusion we shall
use the notation

x(t) ,y(t,),

r(t) u(t, ),

Z(t) (t, o) An(t,

the "sample point" o 2 denoting the fact that these functions are now
random variables, so that (3.35) becomes

(3.36) (t) Ax(t) -I- BV(t) % Z(t).

When deterministic variables are involved, we may consider them as
functions defined to be constants over 2, and hence consider them also as
elements of X1 or X2 as required. For any element x in X1 or X., let E[x]
denote the expectation of x. This expectation corresponds to a (finite-
dimensional) linear functional on X or X2. Paraphrasing (3.34), we have
to minimize

(3.37) i" x(T)]l 2,
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subject to the constraints

(3.38)
T

T

[IE[V(t)]II:dt < M

V(t) E[V(t)] I12 dt <= M2.
We shall now show that the optimal V(t) can be determined as

V(t) Ll(t)[ S(T t)(x(t) p(t)]
(3.39)

+ L2(t)[y S(T t)p(t)],

where L(t) and L.(t) are continuous matrix functions, " y, and
p(t) is deterministic and is the solution of

(3.40) iS(t) Ap(t) + BL2(t)[y S(T t)p(t)], p(0) E[’(0)].

First of all, we let

m(t) E[x(t)].
Then

h(t) Am(t) + BL(t)[-S(T t)(m(t) p(t))]

so that

(3.41)

-t- BL2(t)[y S(T t)p(t)],

#t(t) p(t) A(m(t) p(t))

-t- BL(t)[-S(T t)(m(t) p(t))].

(t) Am(t) + BL(t)[y- S(T- t)m(t)],

i(.t) An(t) + BL(t)[- S(T- t)n(t)],

7(t) x(t) m(t).

But the criterion (3.37) can now be written as

(3.44) y m(T)l[ -5 v(T)II 2,

and hence

(3.42)

(3.43)

where

But

m(O) E(x(O)) E(’(0)) p(0),

so that by the uniqueness of the solution of (3.41),

re(t) p(t), 0 <-_ <= T,
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and each term can now be minimized separately, each with the constraint
read off from (3.38). From the previous theory, we know that a feedback
control of the required form can be found. Of course the constant k0 will
in general be different for Ll(t) and L(t).

This example by no means exhausts the class of stochastic problems,
but the main feature that the form of the control has to be "feedback" or
involve operations on observed data is of course essential in all such prob-
lems, and our purpose is merely to indicate how the abstract space set-up
gives us a convenient frame-work for such problems.

4. Time-optimal problems. We shall examine the time-optimal problem
for the system

(4.1) 2(t) Ax(t) z7 Bu(t),

where A is the infinitesimal generator of a strongly continuous semigroup
S(t), XI and X. are Hilbert spaces, and B, as before, is a linear bounded
mapping of X: into the domain of A. The constraint is taken as

(4.2) u(t)l] =< M almost everywhere.

Let x(0) be given, and let it be assumed that we can find a control satisfy-
ing (4.2) such that, for some finite time T1,

x(T) x,

We want, first, to show that there exists a control that takes x(0) to the
origin in minimum time, and, secondly, to determine the conditions that
this optimal control must satisfy. It is of course assumed that u(t) is
strongly measurable. The classical results on this problem, due to Gam-
krelidze et al., are documented in [9].
The existence of the optimal control will be proved first. Thus let T

be the minimum time and let Tn be a sequence monotone decreasing and
converging to T and let Un(" be the corresponding controls. Then

and

(4.3)

u,(a)ll -<- M almost everywhere in

Tn
x S(T)x(O) + o" S(T,- z)Bu(a) dz

T

S(T)x(O) - fo S(T- z)Bun(z)dz

(0, T),

(Tn- z)Bu,,(z) dz.
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It is clear that

S( T,)x(O) -- S( T)x(O),

and that the third term in (4.3) goes to zero, so our main concern is with
the second term. Let us now consider B.[T; X], and consider un(. as
elements in this space. Let C be the set in B.[T; X] defined by (4.2).
Then un(. will be in C and C is closed and convex. Since C is weakly
compact, we can find a weakly convergent subsequence (renumber it
{u(. )} for convenience) converging to u0(. ). But since C is closed and
convex, u0(. must also belong to C, so that u0(. satisfies (4.2). For any
x inX1,

B’S(T a)*x B[T; X],

since S(t)* is also a strongly continuous semigroup because X is a Hilbert
space. Now for any x in X,

[rS(T-- )Bu() d,x]- [rS(T-- )Buo() d,x
T

[u(a) Uo(a),B*S(T- a)*x] da

T

+ [u,(),B*S(T- a)*(S(T- T)x- x)] g.

The first term goes to zero by the weak convergence of the u(. ). The
second term, in magnitude, does not exceed

const. S(T T)x x [[,
and tends to 0 as n by the strong continuity of the semigroup S(t).
Hence, for every x in X,

[x,x] S(T)x(O) + S(T- a)Buo(a) da, x

and therefore
T

S(T)x(O) + Jo S(T a)Buo(a) da Xl

or u0(" is the sought optimal control.
The next step is to characterize u0(. ). Here we shall eventually need

to make more assumptio on the semigroup. To simplify the notation, let
us now set x(0) 0. For each let us define (t) to be the set

(T) y S(T a)Bu(a) da y, [[ u(a) Ma.e
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Then 2(T) is convex and closed. For let
T

S(T- a)Bu,,(a) do" y,,,

and let

With C defined in B2[X2 T] as before, we know that we can find an element
V(. in C such that a subsequence of us(. )/ (renumbered {Un} again)
converges weakly in B2[X2 T] to V(. ). But for any x in X1,

B*S( T o.)*x, 0 <- o. <= T,
is in B2[X. T], and hence

T

[y, x] f0 [u(o.), B*S(T o.)*x]

and taking limits on each side,
T

[yo, x] fo [V(o.), B*S(T o.)*x]

T

Jo [S(T o.)BV(o.) do., x],

or 2(T) is closed. Let T be a monotone increasing sequence of positive
numbers converging to T. Let u0(. be an optimal control corresponding
to Xl, so that

T

xl Jo S(T o’)Buo(o.) do-,

and xl does not then belong to t(T) for any n. But t(T) is convex and
closed and bounded. Since X is a Hilbert space there is a unique element,
say yn, in (Tn) that is closest to xl,

fix1- xl] >= [[x ynl[ > 0, x [t(T).(4.4)

Now let

xo(t) Jo S(t- a)Buo(a) do..

In particular then, we have

(4.5) [Ix- x0(Vn)ll >= llx- yll

but the left side goes to zero, and hence y converges (strongly) to x.
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Again from (4.4) it follows that (taking real parts, as usual)

(4.6) [x y, x] [x y, Yd < [x y, x],

or, equivalently, for every u(. in C, setting

we have

x

Pn Xl y,, Yn S(T, a)Bun(z)

(4.7) fo
T

[u(a), B*S(T ()*p] de __< f0
rn

[u,(a),B*S(T )*p] dz.

Since yn is unique and u(-) in C is arbitrary, it follows that if we set

y,(a) /cnS(T, a)*pn,

where kn is an arbitrary positive number, then (except possibly for a set
of measure zero)

MB*y,()
if *B y(z) # 0, 0 < z < T

It should be noted that (4.8) is independent of the arbitrary positive
constant
Suppose now that the range of the operator L(t) mapping B[X; t]

into X defined by

L(t)u x, x ] S(t- s)Bu(s) ds,
JO

is finite-dimensional in a neighborhood of T so that the p are confined
to a fixed finite-dimensional subspace of X,. In this case, if we set

1

we can find a subsequence of ]CnPn that converges strongly to an element
p0, which must automatically be nonzero, in fact of norm one; and from
4.8) and (4.5) it follows that

x L( T)vo

where v0 is an optimal control and

Vo(S) MB*yo(s)
B**a0( )II’

where

(4.9)

B*yo(s) # O,

yo(s) S(T- s)*po.

O<=s<=T,
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Next let us consider the case where the operator L(T) is compact, and
X1 is not finite-dimensional. Then we note that the convex set L(T)C
cannot have interior points. Hence in particular xl is automatically a
boundary point. Let {Zn} be a sequence of points in the complement of
L(T)C that converges to xt. Le y be the point in L(T)C closest to z.
Then

y, L(T)u,, u,, C,

Moreover for every u in C,

[L(T)u, z,, y] [L(T)u,, Zn y,],

and, as before, letting p. k,(Zn y), this implies that

u,(s) MB*h(s) B*h(s) O,

where

(4.10) h,(s) S(T- s)*p,.

We note that L(T)un converges to x, and from any subsequence of
we can find a further subsequence which converges weakly to an optimal
control. Also we can take p, of norm one, and converging weakly to p0;

but p0 may be zero in this case.
Finally let us consider the general case where X1 is infinite dimensional

and L(T) is not necessarily compact. First let A0 be the smallest positive
nmnber such that

x S(A)y, y t(T A).

It is clear that A0 has to be less than T. Consider first the case where A0 is
actually zero. Let T < T be a sequence of positive numbers converging
monotonically to T. Then x does not belong to the set S(T T)2(T)
for any n. But each set is convex, bounded, and closed, so that there is
element, S(T Tn)zn, say, closest to x, and we have

where

u.(s) O,

Moreover for each n,

(4.11)

S( T T,)z, L( T)u,

T, <s < T; u,(s)ll =< M a.e. in [0, Tn].

[t.(T Tn)X, Xl L(r_[V)Un] [L(T)u,, xt.L(T)u,]
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for x 2(Tn). Letting

pn k(Xl- L(T)un),

where kn is positive, we have from (4.11) that

[u(s), B*S(T s)*p] ds <= [u,,(s),B*S(T s)*p]ll u(s) <- M,

from which it follows that

MB*S T s) *p,,u(s)
B*S(T s)*p,,.

for s in [0, Tn] such that the denominator is not zero. Also, if xo(t) is the
state corresponding to an optimal control uo(t),

x (T)u <- x ( T )o( )1] O.

Now let us define

u(s) if 0 < s < T,
| MB*S T s)*p
--gCT--)-Un "’ < < ,
I
0 if the denominator is zero and T < s < T.

Then i.t is clear that L(T)v converges to xl, and

v(s) MB*h(s) ,
B () O,

B*h,(s)

where

(4.12) h,(s) S(T s)*p,.
As before, Pn can be chosen to converge weakly to p0, which may be zero.

If A0 is positive, we have

x. S(A0)y.

Then since T is the minimal time, it is necessary that
T-A

y S(T- A- )Bu() d(,

and also that y does not belong to 2(t) for less than T A0. Hence we
have the time-optimal problem for y with the minimal time T A0.
Moreover, since y has to be a boundary point of f(T A0), the problem
is now reduced to the case already considered. In other words, the optimal



OPTIMAL CONTROL PROBLEMS 179

control can be approximated as

(0 for s

v,, (s) MB*S T A0 s)*p
for 8 T A0,B*S(T

B*S*(T- A0- s)*p,
We note that L(T) is compact if the semigroup S(t) is compact for

each positive t. Moreover in this case the semigroup is then [1, p. 304]
uniformly continuous for > 0 and this implies that for each x in X,
S(t)x is infinitely differentiable for > 0. Since X1 is reflexive this implies
that S* (t) also has similar properties.

If the semigroup S(t) is actually analytic, we can characterize (4.9 et
seq.) further in terms of the solution of the adjoint equation. Thus con-
sider the equation

(4.13) d .d--Y(H) A y(H), 0 -< H < T,

with the condition y(T) y0. Then (4.13) has a unique solution. For,
let Z(H) be a null solution corresponding to Z(T) 0. Then we note that

d__ S*(H)Z(H) A*S*(H)Z(H) S*(H)A*Z(H) 0
dH

for 0 < H < T. Hence

S*(H)Z(H) O, 0 < H < T.

But since the semigroup is analytic, zero cannot be in the point spectrum
of S*(H) and this implies that

A(H) =0, 0<H < T,

or that (4.17) has a unique solution, namely,

y(H) S(T- H)*y0.

REFERENCES

[1] E. HILLE AND R. S. PHILLIPS, Functional Analysis and Semigroups, American
Mathematical Society Colloquium Publications, Providence, 1957.

[2] R. S. :PHILLIPS, A note on the abstract Cauchy problem, Proc. Nat. Acad. Sci. U.
S. A., 40 (1954), pp. 244-248.

[3] T. KATO AND H. TANABE, On the abstract evolution equation, Osaka Math. J.,
14(1962), pp. 107-133.

[4] S. KARLIN, Mathematical Methods and Theory in Games, Programming and Eco-
nomics, vol. 1, Addison-Wesley, Reading, Massachusetts, 1959.



180 A. o BALAKR]SHNAN

[5] M. R. HESTENES, Variational theory and optimal control theory, Computing
Methods in Optimization Problems, Academic Press, New York, 1964.

[6] t.. BELLMAN, I. GLICKSBERG, AND O. GROSS, Some aspects of the mathematical
theory of control processes, The RAND Corporation, Ieport R-313, 1958.

[7] A. V. BALAKRISHNAN, An abstract formulation of a class of control problems and a
steepest descent method of solution, this Journal, 1 (1963), pp. 109-127.

[8] M. M. VAINBERG, Variational Methods for the Study of Non-linear Operators,
Holden-Day, San Francisco, 1964.

[9] L. S. PONTRYAGIN, Err AL., The Mathematical Theory of Optimal Processes, Inter-
science, New York, 1962.



J.SIAM CONTROL
Ser. A, Vol. 3, No.

Printed in U.S.A., 1965

THE PROBLEM OF BOUNDED SPACE COORDINATES AS
A PROBLEM OF HESTENES*

T. GUINN
1. Introduction. The problem here considered is that of first order

necessary conditions for a problem in the calculus of variations which
involves inequality constraints on the space variables independent of the
control variables.

In 1961, Gamkrelidze [1] using methods developed by the Pontryagin
school [2]-[6] obtained necessary conditions for a somewhat less general
problem than is considered here. Berkovit [7], using the classical varia-
tional theory as presented by Hestenes in [8], obtained all but one of Gam-
krelidze’s results for a similar problem. Both approach the problem by
dividing an optimizing arc into subarcs with special properties. This gives
rise to difficulty in matching multipliers at points at which the subarcs
are joined. To avoid normality assumptions it appears necessary to con-
sider arcs as a whole as is done here. For a discussion of normality, see
Bliss [11]. The concepts there must be modified for this problem.
We here show that a general problem of this nature can be reduced to

the problem of Hestenes [9], [10]. The development uses a device of Gam-
krelidze to obtain one result. Not only are the results of [1], [7] obtained
but it is further shown that the multipliers can be chosen to have less
discontinuities than theirs.

2. The problem. Consider the problem of finding i a class of arcs

U
kx’x(t), (t), w;

<= <= tl;i- 1,...,n;k 1,...,m;a 1,...,r;

satisfying conditions of the form

(2.1) 2 =f(,x,u,,)

(2.2) ,(t, x, w) >__ 0, 1, s,

(2.3) (t, x, u, w) _-> 0, / 1, ..., p,

(2.4) T(w), x(t) X(w), O, 1,
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I => O, v 1,-..,q;
(2.5)

I O, q - 1,.--,q;

where
tl

Iv g.(w) q- fro f(t, x(t), u(t), w)dt;

one which minimizes

g(w) + f f(t, x(t), u(t), w) dt.

We assume that all functions of (t, x, u, w) are of class C’ in a region R,
that .(t, x, w) is of class C" and that grad .(t, x, w) does not vanish.
Let R0 be the set of all elements (t, x, u, w) satisfying (2.2) and (2.3). Let
S be the set of elements in (t, x, w)-space which satisfy (2.2) with bound-
ary S*. Assume that if (t, x, w) is in S* then the vectors grad ,(t, x, w)
are linearly independent for all a such that ,(t, x, w) 0.

Define an admissible control u(t) to be a piecewise continuous function
such that if x(t) is a solution of (2.1) for u u(t), then (t, x(t), u(t), w)
is in R0 for <- <= 1. The corresponding arc

t<_t<_x" x’(t) u(t) zo, ,
will be called differentially admissible and, if (2.4) and (2.5) are also satis-
fied, totally admissible.
Assume an arc x0 affords a strong relative minimum to I in the class of

totally admissible arcs. Appropriate necessary conditions for a special
problem will be first derived, then stated in Theorem 4.1. These results
will then be extended to a more general problem in Theorem 5.1.
We remark that we cart assume that only T, X, g, g depend on w,

since we can always let

2+ O, 1,...,r,

x+(t) w,
and thus treat w as a space variable.

3. Preliminary results. The problem of Hestenes is the same as givert in
2 with the deletion of (2.2). We will first state some results from [9], [10]
for this reduced problem which will then be used for the case when (2.2)
is present. Here R0 is the set of all elements (t, x, u, w) satisfying (2.3).
As in [9], a broken field ff is a region in (t, x, w)-space and a set of func-

tions U (t, x, w) such that (1) the functions U (t, x, w) U ’(t, x, w) are
continuous in (t, x, w) except for a finite set of values t, t, at which
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points they have left and right hand limits which are continuous in x and
w; and (2) the elements (t, z, U(t, x, w), w) are in R0 for all (t, x, w) in g.
By an arc in g we will mean a solution

uk _< _<x" xi(t), (t), w, 1,
of the system

2 f(t, x, U(t, x, w), w), u U(t, x, w).

We now introduce a requirement on conditions (2.3). Given a point
(, 2, 2, ) for which (2.3) holds, let as, at be the set of vlues for
which 4)(, 2, , ) 0. We assume the matrix

has rank h at (i, 2, , ). With this assum.ptiot we have"
LEMMA 3.1. A differentially admissible arc

Xo Xo Uo Wo <= ,
is an arc of a broken field o with control functions U0(t, x, w). Moreover, if
(i, , (t, ) is in Ro, there is a brotcen field s defined over a neighborhood of
(, 2, z) with control functions (t, x, w) such that (, "2, ) (t.
This is a trivial modificatioI to Lemma 16 iu [9]. Similar results without

introduction of broken fields are given in [10, 4].
TEOUE 3.1. Let Xo be an arc of a broken field which affords a strong

relative minimum to I in the class of totally admissible arcs. Then there exist
multipliers Xo . p(t) such that if we set

(3.1)
H(t, x, u, p, X, t, w) pf

G(w) hog

Xof +

(1) The multipliers ho, ks,..., Xq, are nonnegative constants. Further,. 0 for each " >= i for which I.(Xo) > O. The multipliers o, ., p(t)
do not vanish simultaneously at any point of <= <= 1. The multipliers
(t) are nonnegative functions, continuous except possibly at discontinuities
of uo(t). Also (t) O, 1,..., p, when O(t, xo(t), uo(t)) > O.

(2) Along Xo

(3.2) 15 -H, H 0.

(3) The inequality

(3.3) H(t, Xo(t), u, p(t), h, O, Wo) <- H(t, xo(t), uo(t), p(t), h, O, wo)

holds for all on <= <= and for all u such that t, xo, u, Wo) is in Ro.
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(4) The transversality condition,

(3.4) dG - H dT + pi(t) dX]=1 f Hw, dw dt O,

holds on xo for all dvo.
This is equivalent to Theorem 3.1 of [10]. Contained in the proof but not

stated explicitly is the additional result that the functions ta(t) have as
many derivatives with respect to as the lesser of

H(t, Xo(t), no(t), p(t), ), O, wo)

and

u(t, xo(t), no(t), Wo).

4. A special problem. With the simplification of a device due to
krelidze we now reduce a special case of the original problem to that con-
sidered in 3.
Suppose that for some a, (1 <__ a <= s), a(t, xo(t)) 0 for tl _-< __<

Then since ,(t, x) is of class C’r, we can choose a neighborhood Ma of
(t, Xo(t) and a vector Na(t, x) of class C on Ma such that the inner product

(4.1) (Na(t, x), grad (t, x)) ->- 0, (t, x) in M,.

The magnitude of N,(t, x) is at our disposal. For convenience we denote by
Y (y0, yl, y.), the (n + 1)-dimensioal vector with components
yO t, y x, i 1, n. The for 1 < i’ and t’ sufficiently small,
if y satisfies /,(y -t- ,N,(y)) O, then y is i M,. Further, if __< 0
the definitio of Na(y) assures that y is in S. Define fo 1 and set

,+,(t, x, u, ,) ,(y z7 ,V(y) )f(t, x, u), a 1, s.

Then for any point (t, x) in S*, for admissibility of u we must have that

(4.2) +,(t, x, u, 0) >__ 0

for all a such that ,(t, x) 0.
We first consider the case where (t, xo(t)) is in S* for =< =< t and

is interior to S for t -< . By a suitable change in parameter we may
take --0, 1. We assume that on 0 __< -<- t, the matrix

(4.3) \-U]
has maximum rank for all subscripts p p + a such that +,(t, x, u,

0 and all subscripts p / such that (t, x, u) 0. Set

4)+.(t, xo(t), no(t), O) 4)+.(t), a 1, ..., s
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Then the system of equations

+.(t, x, u, ,) +(t) 0,

(t, x, u) 0, / tl, f=,

has a solution for each point on the extended interval 0 __< =< tl -- e

for some e > 0 in a neighborhood of [x0(t), no(t), 0]. By Lemma 3.1, x0
is an arc in a broken field fi71 on the larger interval. For =< 0, an arc
x(t) in 5:i is in R0 provided that a[0, x(0)] >= 0. Hence, in addition to
(4.2) we must require that

+ (o, x(o)) _>_ o,
(4.4)

I++ - _>_ 0.

Next we assume that on tl __< -<_ 1 the matrix

\Ou/
has maximum rank for all subscripts fl. as above. Then, again by Lemma
3.1, x0 is an arc in a broken field if2 on t -< =< 1.
We extend the arcs in ff [’l R0 to the interval 0 -< __< 1 using those in

ff. for t + e __< =< 1. The resulting arcs lie in R0 and the corresponding
control functions U(t, x) satisfy the hypotheses of Theorem 3.1 since we
have at most introduced a discontinuity at ti -- e. I-ence, the conclusions
of Theorem 3.1 hold, where because of (4.4) the function of G in the trans-
versality condition corresponding to (3.4) becomes

(4.6) G 0g hg Xq+,,(0, X(w)) + q++,,

and the fuction H corresponding to (3.1) becomes

H(t, x, u, p, , t, ’) pf -t- f )of -t- ,
(4.7)

p= 1, ,p+s.

If we assume that the partial derivatives of H(t, x, u, p, , O, O)and
+,(t, x, u, 0) with respect to u are of class C’ on x0 except at discontinu-
ities of no(t), then f+,(t) has the same discontinuities as no(t) by the re-
mark following Theorem 3.1.
Now, since (t, x0(t)) is in S* for 0 __< =< t, for at least one value of a,

(p + 1 <= o <_ p--s), 4)(t, xo(t),uo(t),O)= 0 at each point t. For
simplicity assume that a a, a constant. Take N.(t, x) O, a . a,
and N,(t, x) 0 at 0 and t. By considering to be an additional param-
eter w, noting that appears in H only in 4), nd applying the transversality
condition (3.4), we have that
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(4.8)

along Xo. To evaluute , long Xo we define y us before and set v y
+ N(y). Then

(t, x, y,
(4.9)

where a is not summed. Hence, long xo,

o,(t, zo(t), uo(t), O) ’
.i

where 0 1, f(t, xo(t), no(t)), i 1,..., n. But also

d N(4.]0)

along Xo. Integrating (4.8) by parts we have that

It=01 + a ay Na dt N O.

The boundary terms wnish by choice of N(t, x). Since also N, 0
by (4.1), N,(t, x) is arbitrary on 0 < < t, and p is continuous except
possibly at discontinuities of uo(t), we have that p 0 except at these
points. With this we have proved the following.
TEonn 4.1. Under the foregoing assumptions, let xo(t) afford a strong

relative minimum to I in the class of totally adnissible arcs. There exist multi-
pliers ho +, ,(t), p(t) such that if we set

(4.11) tI(t, x, p, w,

(4.12) G hog hg hq+(t, X(w)),

conclusions of Theorem 3.1 hold, where +,(t) O, a 1,..., s, when
,(t, xo(t), Wo) > O. Further, + is a nonpositie function with the same
continuity properties as uo(t).
Next suppose that for < t and t < , x0 is interior to S

while in S* for t t. By a suitable change of parameter we can
take -1, t 0, and 1. Assume that for 0 t, the condi-
tion corresponding to (4.3) holds and similarly for (4.5) on 1 0
andt 1.

Let

(t) x(-t), (t) u(-t), 0 1.
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Set

F(t. x. u) (’(t’ U)X
k0, , a),;(t, , ) o,

and similarly for other functions of (t, x, u) and (t, x).
Consider the problem of finding in a class of arcs

-i Uk (tkx’x,x, w, i--- 1,...,n;k 1,...,m;- 1,

satisfying conditions of the form

(2.1’) 2’ F(t, x, u), : -(t, 2, a);

(2.2’) ,(t, x) -> 0, ,(t, 2) >_- 0;

(2.3) k(t, x, u) >= O, (t, "2, ) >= 0;

0, 1, x(1) Xa(w),
(2.4’)

x(0) w+, :(1) X(w);

g(w) + fo (F(t, x, u) + f(t, "2, (t)) dt >= O,

I+. .(0, x(0)) >= 0, I++ - >= 0;

one which minimizes

I g(w) (F(t, x, u) -t- (t, 2, 4)) dt.

O_<_t=<l,
otherwise;

O<__t_<l,
otherwise;

...,r+n;

This problem corresponds to the previous case. Hence, i x0 minimizes
the original problem, for the transformed problem there exist multipliers
o, h,..., hq+,+, tl(t), "", tv+(t), (t),..., v+(t), p(t), ...,
p,,(t), (t), ..., ,(t), and functions

I piF -piF + h(F. + F.)
(4.13)

0(F + $) + ,,, + Z,5.,

(4.14) G hog Xg ),q+,.(0, x(0)) + },q++l,

such that the conclusions of Theorem 3.1 hold along x0 given by

Xo" x0’(t), o (t), u0 (t), ao (t), w0,
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Applying the transversality condition (3.4) gives

(4.15) ,odg hdg. + p(1)X’l(w) + iS(1)X’(w) 0,

(4.16) p,(0) -4- /5,(0) -- ,q+.x(0, x0(0)) 0.

We note also that the multipliers g+(t)
(t, z0(t)) > 0.
On0 _< < lset

=-- 0, a 1, ..., 8, since

pi(t) --,( --t),

and observe that 2(t) -2(-t). Substituting these in (2.1’) through
(2.5’), (4.13) and (4.14) we find that the conclusions of Theorem 4.1
hold except that now t.(t), p,(t) may be discontinuous at 0 with the
discontinuity for p,(t) of the form (4.16).

Added in proof. An equation was inadvertently omitted following (4.16).
The transversality condition also yields that

(4.17) -/-/+ x+ ,(o, x0(o)) o,
where given by (4.13) is evaluated at 0 on xo(t). Thus the function
H given in Theorem 4.1 may also be discontinuous at 0. The statement
of Theorem 5.1 should be modified accordingly.

5. The general problem. To generalize this result suppose that for 0,
1, and 2, x0 is interior to S while in S* on one subinterval of 0 < < 1
and one subinterval of 1 < < 2.

Let

Set

(t) x(t 1),

x, u),F(t, x, u) O,

f(t-- 1, , a),(t, x, u) o,

a(t) u(t- 1), l=<t__<2.

0__<t=<l,
otherwise;

0<=t<=l,
otherwise;

and similarly for other functions of (t, x) and (t, x, u). This reduces to
the previous case where now

+ .(o, xo(O)) > o,
so L+, hq+. are all zero. Hence, the transversality condition gives

(5.1) pi(O)

t(t) g(--t), 1, ..., p,
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Setting

,,( + l) z,(),

p( / l) (),

we have that, because of (5.1), the functions pi(t) are continuous, at 0.
We define a point x0(i) to be a contact point if for some > 0, xo(t) is

interior to S for -< < while x0(i) is in S*. We call a contact
time. Then since Theorem 4.1 as proved includes the case where x0 lies
entirely in S*, the generalization to where x0 has a finite number of contact
points is clear. Hence we have proved"
THEOREM 5.1. Under the above assumptions, Theorem 4.1 holds except

that the multipliers pi(t), p(t) may be discontinuous at contact times, where
discontinuities in p(t) are of the form (4.16).
The conclusion that p -< 0, p - 1, p - s, was first obtained

by Gamkrelidze [1] for the problem where (2.1.) is independent of w,
(2.2) depends on x alone, (2.3) on u alone, and (2.4) and (2.5) are not
given. The method for this result used here is an adaptation of his. He
does not determine that itself is nonnegative. Berkowitz [7], using
methods based on [8], derives the condition on but not its derivative and
for a problem where (2.5) does not appear.

Gamkrelidze’s definition of "jump point" includes both a contact point
s here defined and also a point at which x0 leaves S*. The methods of [1]
and [7] give a possible discontinuity of p(t) at jump points rather than
at just contact points. It is not clear how either author obtains that X0
can be chosen continuous without an additional hypothesis regarding
normality.
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AN EXTENDED PONTRYAGIN PRINCIPLE FOR CONTROL
SYSTEMS WHOSE CONTROL LAWS CONTAIN

MEASURES*

RAYMOND W. RISHEL

Introduction. In this paper, nonlinear control problems where the con-
trol laws are Radon measures are considered. This includes the cases where
the control laws are 8-functions or ordinary functions or a combination of
8-functions and ordinary functions. A technique is developed for trans-
forming this type of control problem into an equivalent control problem in
which the control law is given by an ordinary function. This equivalence
is used to show that Pontryagin’s principle for ordinary systems implies
an analog of Pontryagin’s principle for systems whose control lws are
Radon measures. The equivalent system is obtained by filling in the jumps
of the trajectory of the original system with straight line segments nd
reparmeterizing by a parameter that could be clled "time plus control
fuel used." In order to obtain both implications of the equivalence, a
simple condition is assumed. This condition assures that no advantage
would be gined by varying the control during an impulse and suffices to
make the two optimization problems equivalent.
The optimal control of rockets in a gravitational field where the control

laws were allowed to contain 8-functions was considered by Lawden [4].
In [2], Friedland and Ladd computed the minimum fuel control of a second-
order linear system where the control law was allowed to contain 8-func-
tions. In each of these treatments, the necessary conditions for optimality
were obtained by a formal limiting procedure from the necessary condi-
tions when the optimal control laws were bounded functions. There is also
a large literature on the optimal impulsive transfer of space vehicles be-
tween orbits. Typical of these papers are [1] and [9].

Neustadt, in [6], considered the optimal control of linear systems in
which the control laws were allowed to contain 8-functions. His results
overlap with the results of this paper in the case where the equation of the
system is linear. Schmaedeke, in [8], obtained existence theorems for
optimal control laws for systems whose control laws were given by meas-
ures. The systems considered were nearly of the same generality as those
considered in this paper.

Definitions and preliminary considerations. Let x denote an n-dimen-

* Received by the editors October 5, 1964, and in final revised form December 21,
1964.

t Mathematical Analysis Staff, Aero-Space Division, The Boeing Company,
Seattle, Washington.
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sional vector of state variables, u an m-dimensional vector of control
wriables, the time, and a positive Radon measure on the time axis.
Let f(t, x, u) and gi(t, u) for i 0, 1,... n be continuous real valued
functions of the variables indicated. The functions gi(t, u) and f(t, x, u)
will be assumed to be differentiable with respect to and the x variables.
The function go(t, u) will be assumed to be a nonnegative function go(t) of
only the variable t. Let f(t, x, u) and g(t, u) denote the vector functions

f(t, x, u) (fl(t, x, u), fi,(t, x, u) ),

(t, u) ((t, u), ..., (t, u)).

A positive Radon measure t and a Borel measurable vector function
u(t) defined almost everywhere on an interval [to, with respect to
both Lebesgue measure and t will be called a control law. It is only a
convenience to have control laws defined on an infinite interval. Usually,
the values of the control lw, after some finite time, play no role.
A vector function x(t) will be said to be the trajectory, on an interval

t0 tl of a control system with equation of motion

() dx
d-- f(t, x, u) + g(t, u)

corresponding to the control law (u(t), u) and initial condition x0, if

(2) x(t) Xo + f(s, x(s), u(s) ds -t- g(s, u(s) )u(ds)

holds for every t, to =< -< tl.

The symbol ] will always be used to denote the integral over the
,t

closed interval [to, t]. This implies that x(t) is right continuous on [to, tl].
Formula (2) shows

(3) x(to) Xo -t- g(to u(to) )u(Ito}

thus, x(t0) may differ from x0 if the measure of the single point {t0} is dif-
f_erent from zero.
Given a positive Radon measure and a constant to, define functions

F(t), v(t), r(v), and/Y(t) on the interval [to, by

(4) F(t) t(ds),

(5)

(6)

v(t) - F(t),

-(v) inf {t’v(t) >_-
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(8)

(9)

If Vl < n, then

(10)

nd

(11)

(7) 2P(v) n r(v).

The following are easy consequences of these definitions"

r(v(t)) t, /7(?(t)) F(t),

v(t) sup {,’r(v) t}.

Equations (10) and (11) show /(n) and r(n) are nondeereasing and
Lipschitzian with Lipschitz constant 1. Therefore, (n) has a derivative
v(,) defined almost everywhere such that 0 v(n) 1 and the formula

(12) (v) u(V) dn

holds. Formul (7) implies tht the derivative of r(n) is given by 1
nd

L 1. Le r( n be a coio nodecreai fcioe 4 n d@ed on
a ierval [o, ch ha r(o) o. Let n() be defied o he ierval
[a, ad alifg (9). Le ad be vale 4 ch ha < i. Thee

-{(1) (, ]/ (n(),

--1

Pro4. Since n() satisfies (9), r(()) . If (l) <
r(()) N r(n) N r(n(i)) , since r(n) is nondeereasing. Propery

(9) implies < r(). Hence

(16) r-{ (t, t]} (v(t), v(ts)].

Since is nondecreasing, (9) implies that if t r(v) ts,

(17) v(t,) < v v(r(v)) (ts).

nc
(18) -i{(t,, tA} (,(t,), ,(t)].
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Since r(v) is increasing and T(to) to, (9) implies

(19) --{to} [to, v(to)].

Hence,

(2o) [to, t]} --{to} [.J --{ (to, t]} [to, /(t)l.

LEMMA 2. Let U be a positive Radon measure and () and u() the func-
tions defined above. Then

(21) t(A) f v(n) dn
--I(A)

for every Borel subset A of the interval [to, ).
Proof. Since both sides of (21) are countably additive with respect to

A, it is sufficient to establish (21) when A is a half-open interval (ti, t.]
or the single point {to}. Using (4), (8), (12), and (14),

((ti, t.]) F(t) F(t)

(22) (v(t’)) /Y((t)) ,(,) d.

Using (4), (8), and (12) again shows
(t)

fr(23) ({t0}) F(to) /Y((t0)) u(,/) d
-({to})

,(,) d,;

hence, (21) is valid.
LEMMA 3. Let ,() be a measurable function such that 0 -<- ,() <= 1 and

let to be a constant. Let

(24)

Let t) satisfy

(25) sup/,:(,) t}.

Then, ’(v) 1 almost everywhere on the set {:(r(v)) }.
Proof. The function r(v) is nondecreasing and v(t) is strictly increasing.

Hence, if 7(r()) v, v is either an interior point or a left end point of
an interval on which r(v) is constant. There are at most countably many
such intervals. The function u(v) must equal one almost everywhere on
each since r(v) is constant. Hence, the lemma follows.

Let h(t) be a Borel measurable function and A be a Borel measurable
subset of [to, ). Theorem 3C of [3, p. 163], Lemma 2 and (13) imply
the following two change of variables formulas hold.



SYSTEMS WHOSE CONTROL LAWS CONTAIN MEASURES 195

--I(A)

f h(())[1 ()] d f h(t) dt.(27)
-(())

Since v-(v(A)) A (,’,(v(,)) ,I, Lemma 3 and (27) imply

f h(t) dr.(28) h(r(v))[1 (v)] dv

The optimization problem. The purpose of this paper is to study the
following optimization problem. Let U be a subset of m-dimensional space,
x0 and xl be two states, and to an initial time. Consider the class of control
laws (u(t), ,) such that u(t) U and there is a corresponding solution
x(t) of the equation of motion

dx f(t, x, u) + g(t, u)t(29)
dt

on some interval [to, tl] with initial condition x0 and terminal condition
x(tl) Xl. Find, in this class of control laws, a control law (u(t), t) which
minimizes the performance index

tl

ft
tl

(30) fo(s, x(s), u(s) ds -t- go(s)t(ds).

Cll this optimization problem "Problem A." The technique of studying
Problem A will be to find another optimization problem, called "Problem
B," in which the control laws are given in terms of ordinary functions
which is equivalent to Problem A as an optimization problem. With this
in mind, consider the following optimization problem which shall be called
Problem B.

Consider the class of control laws (u(), ()) in which u(v) and
are respectively an m-dimensional vector-valued and a real-valued Borel
measurable function on an interval [to, ). The values of u(v) belong to
the subset U and 0 _-< () 1. There are corresponding solutions z(v)
and r(v) of the equations

(31) dz
d- f(r, z, u)(1 ) + g(r, u),

(32) dr_ 1- ,
dv

on an interval [to, 71] for which z(to) x0, r(t0) to, z(vl)
In this class of control laws (u(v), (v)), find a control law which mini-
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mizes the performance index

(33) ft" [fo(r(v), z(r/), u(r/))[1 v(r/)] q- go(r(V))v(r/)] dr/.

THEOREM 1. Let (u(s), ) be acontrol law of the type described in Problem
A. Let r(r/), r/(t), and v(r/) be functions defined in terms of the measure
by (4)-(7) and (12). Then, (u(r(s)), v(v)) is a control law of the type
described in Problem B and

(34) g(r(r/), u(r(.q)))e(r/) dr/

and r(r/) are corresponding solutions of (31) and (32) for which z(to) Xo,
r(to) to, z(vl) Xl. Moreover, the performance index of Problem A has
the same value as that of Problem B.

Proof. Since x(t) is a solution of (29), (2) implies that

(35) x(r(r/)) Xo q- f(s, x(s), u(s)) ds -+- g(s, u(s) )tt(ds).

Formulas (28), (26), and Lemma 1 imply

x(r(v)) Xo -t- f(r(r/), x(r(r/)), u(r(r/)))[1 v(r/)]
(36)

(r())

q- g(r(r/), u(r(r)))(r/)

Lemma 3 states that v(r) 1 almost everywhere that r/# r/(r(r/));hence,
almos everywhere, either x(r(r/)) z(r/) or v(v) 1. Therefore, sub-
stituting z(r/) for x(r(n)) in the first integral of (36) and subtracting

f,,(r(,)) g(r(r/), U(r())) dr from both sides of (36) gives"

z(r/) xo zr- f(r(r), z(r/), u(r(r/)))[1 v(r/)] dr/
(37)

Equations (aT) and (la) show tha (al) and (a2) are satisfied by
(r) and r(). Let n (G); ghen (8) and (a4) imply that z(r)

x(tl) z. Formulas (aT) and(la)showthatz(to) zoandr(to) to.
rom Lemma 1, r-l([to, G]) [to, m]. Lemmas 2 and a and the change

of variables formulas (26) and (28) imply
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tl

ft tl
fo(s, x(s), u(s) ds -ff go(s)(ds)

(38)
[f0((n), z(), u(()))[1 ()] + 0(())(())]

completing the proof of Theorem 1.
The functions g(t, u), i O, 1, n, will be said to satisfy the con-

stancy condition if, for each fixed and each pair of states x0 and xl for
which there are values 0 and w and a Borel measurable function u()
such that

(39) g(t, ’/g(n)) d7 Zl- x0,

there exist a vector u* belonging to U and constants k, (I’o, 1, (n such
that

(40) 0 < 0,

(41) xl x0 /g(t, u*),

(4) a (R) ,(t, ) (t, *) o.
uE U i=0

LEMMA 4. Let the functions g(t, u) satisfy the constancy condition. Let
(u(7), (7)) be a control law in the class described in Problem B. There is a
control law u*( 7), v*( 7) in the class which has the property

* 7* r*(43) u 7) u*( (/)))

whose performance index is no larger than the performance index for the
control (u(7), v(v) ).
The statement u*(7) u* 7" (r* (7)) is the condition that u*(7) is

constant when r* (7) is constant. In this lemma, r (n) is defined by (24)
and 7*(t) by (25).

Proof. As in the proof of Lemma 3, it is seen that

{ [to, 1"(-()) ,}

is countable union of intervals on which r(7) is constant nd (7) 1
almost everywhere. Formulas (24) and (25) imply these intervals will be
left-closed and right-open intervals with the exception that if there is an
interval which contains vl, it will be closed. If this is the case, remove the
point m from this interval to obtain a collection of half-open intervals.
Order this collection and let I [n0, 71) denote the nth interval which
hs endpoints 7 and w1. Let tn denote the constant value of r(7) on In.
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Since () 1 almost everywhere on I.,

() dz() (t u()
dn

holds almost everywhere on I. Let z(v) z0 and z(l) z.1. Since
gi(*, u) satisfies the constancy condition and go(t) >- O, Theorem A of
[5, p. 243] implies there is a value w and there is u U such that

yn

(45) ,f.o g(t, u) d z.- z.

and

(6) n

Let J denote the interval [n2, W). Let in denote the closure of
Define /(v), fl(), (), and () by

(47) ’(v) to -t- f
tO,)-- U Jn

n--

(48) () sup, {,:(,) },
,, if r I,,() a(n) (), ogherwise,

z, nt- g(,, ,)(r r,), if n I,,(50) (n) z(n), otherwise.

Define r*((), z*(), *(), ,*(() by

() (()), () (()),
(51)

u () (()), () (()).

With these definitions, the formula

(52) f d,
--1(A) U J’n

n.-.l

holds. To establish this formula, it is sufficient to establish it in the case
where A is a half-open interval [0, ) since both sides are countably
additive with respect to A. From the definitions (47) and (48), it is seen
by an argument similar to Lemma 1 that

(53) --1{[0, 1)} ( ["Y(’O), "Y(I)] and --1{[0, 1)} ) [V(O), "Y(I))

Hence,
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(54)
-l0,,)l -.0,)-

Since the range of () is disjoint from (J:= J, it follows from (52) and
Theorem 3C of [3, p. 163] that if h(v) is a Borel measurable function nd
A a Borel measurable subset of [to, ), then the change of variables
formula

f h(()) d ./ h(v) d(55)
-()

holds. Consider u value of v so that v is not point of any I..

z(,) x0 + (z()
n

(59)
+
[t0,]- n

n=l

Since (v) 1 almost everywhere on I, (45) implies

z(,) f [f(t ,(,), u)(Z(n1)
n--Jn(57)

+ g(t, u),(,)]

If v is point of I, (50) implies

(8) e(n) z(n) + [f(,e(n), )(1 (n)) + (, )(n)l

Hence, using the definition (49) of () and (50) of2(), and (56), (57),
and (58),

e(,) x0 + f(59) to.,-=u
[f(r(n), 2(v), @(n) )(1 v(n)

+ g(v(v), (v))()] dv

if v is not a point of some J.
Since Jn C I and (v) 1 almost everywhere on I,

t0,]-- U

Since the range of () is contained in [to, [J:= J, the change
of ariables formula (55) and (59) and (60) imply
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(61)
z*() xo + [f(*(),z*(), u*())( *())

d- g(r*((), u*() )*(()] d

*( f,r () to -t- [1 *(()] d.

Let 1 7(1). Since nt is not a point of an interval I, ((n)) v
hence

(62) Z(I) ((’(1))) Z(I).

This shows (u*((), *(()) belongs to the (;lass of control laws described in
Problem B.
Now, since (v) 1 almost everywhere on I and go(t) >- O, (46)

implies

f e(n),- + o(t,),.(n)] dn[fo(t,
nJn

(63)

Formulas (63) and (55) imply that

’ [f0(*(), z*(), u*())(1 *()) + e0(*())*()] g
(64)

N [f0(r(n), z(), (n))(1 (n)) + g0(,())(n)]

Since n*() sup/" r*(() }, eigher and (n*(r*(())) are identical
or belong o ghe same ingerval on which r s eonsgang. Since r*(()

r(()), and (() is sriely increasing, (() and (n*(r*(())) belong o
ghe same ingerval on which r is constant. Since *(() a(() if
(() belongs o I, i follows ha (a) holds.
o 2. Le ((n), (n)) be a control law 4 he gpe described i

Problem B. ge r(n), n() and, be defied in erm 4 (n) bg (24), (2),

() (n((n)))

la 4 he pe described in Problem A ad z() z(n() i a olio 4
(29) wih iiil codiion zo ad ermial codiion z(h) z. Moreover,
he performance indez of Problem A ha he ame vale a ha 4 Problem B.
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Proof. Since z(v) is a solution of (31),

z(v) x0 - [f(r(v),z(v) u(v))(1 (v))
(66)

+ ((), u())()] d.
Lemma 3, (65), Lemma 1 and the change of variables formulas (26) and
(28) imply

z(,(t) xo + f’() [f( (,), z(,((,))), u(,((,) )( ,(,))

(67)

xo+ f
+ e((,), u(,((,)))),(,)] d,

f(s, z(,(s)), u(,(s) )) ds

+ f0 e(s, u(,(s))),(ds).

Another application of Lemma 3, (65), Lemlna 1, (26), and (28) shows
the two performance indices have the same value.
THnOnE 3. Let g(t, u) satisfy the constancy condition. Then, optimiza-

tion Problems A and B are equivalent in the sense that if either has an optimal
control law so does the other. Optimal controls for Problem B may be defined
in terms of those of Problem A by (4)-(7) and (12). If Problem B has an
optimal control law, there is always one which satisfies (65). An optional
control law for Problem A may be defined in terms of this type of optimal
control law for Problem B by (24), (25), and (21).
Theorem 3 is consequence of Theorems 1 and 2 and Lemm 4.
THnOnM 4. Let g(t, u) satisfy the constancy condition. Then necessary

conditions for (u(t), ) to be an optimal control law for Problem A are the
existence of a nonpositie constant o continuous functions (t), (t)
and a right continuous function n+(t), not all identically zero, such that:
the functions i(t), i 1, n, are solutions of (68) +1(t) is a solution

of (69); (70) and (71) hold almost everywhere on [to, h] with respect to
Lebesgue measure; (72) and (73) hold almost everywhere on [to, ti] with
respect to t; (74) is satisfied at ti.

(R)(t) -. of(t, x(t). u(t)(68)
dt =o Ox

(t), i 1,2, n.

(69)

dn+l(t) Of(t, x(t), t(t)
dt =o Ot

Og(t, u(t)) (t).
=0 Ot
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(70) max f(l, x(t), u)((t) f(t, x(t), u(t))((t) --,+(t).
uEu j=0 =0

(71) sup g(t, u)(t) <= O.
uEu

(72) mx g(t, u)(t) g(t, u(t) )(t) O.
u -=o --o

(73) sup f(t, x(t), u)(t) <= --n+l(t).
uU j=O

(74) n+l(tl) 0.

Proof. Theorems 1 and 3 imply that for each optimM control law of
Problem A there is a corresponding optimal control law of Problem B for
which u(7) u(7(t(7))). Applying Pontryagin’s principle to Problem B
gives the following necessary conditions for an optimM control law (u(
v(7)). There exist a nonpositive constant 0 and continuous functions
(7), i-- 1,... n + 1, such that (75)-(78) hold almost everywhere
with respect to Lebesgue measures on the interval [to, 71].

d/(7) Of(T(7), Z(7), U(7) 4/() (1 v(7) ),
(75) d7 ’=0

i- 1,...,n.

d7 -=0 Ot
(76)

o.((), u()) ()().
-=0 Ot

(77) n+1(71) O.

max Ff((7), z(7), u)6(7)[1 ]
uu [_
O< v_<_l

+ ;((n), );() + +()[
(78)

=0

f(’(7), z(7), u(7))/(7)[1

2r- E gj(T(7)U(7))j(7)V(7) -- n+1(7)(1 V(7)) 0.
j=0

Since the values of v(7) for 7 > 71 play no role in Problem B, it may be
assumed that (7) 0 if 7 > ql.
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The expression to be maximized in (78) is of the form

(79) a(u)(1- v) + b(u)v.

In order that

(80) max [a(u)(1 ) + b(u)] 0
uEU

it must follow that a(u) <= 0 and b(u) <= O. If either of these quantities
were positive there would be a value of , making (80) positive. If (80)
is maximized by u*,,,* it must follow that

a(u*) 0 if v* 0,

(81) b(u*) 0 if v* 1,

a(u*) b(u*) 0 if 0 < v* < 1.

tIence,

(82)

and

max fs(r(r), z(q), u).(q)
uEu ’=0

fs((7), z(7), u(7))s(7)

(83) sup g.((,), u).(,) __< 0,
u u ./=0

(84)

and

if () O;

ax : o(,(,), u)-(,) .(,(,), u(,))-(,) 0
v a’=0 j=0

(85) sup f’(r(7), z(7), u)bs(7) --b,+1(7), if (7) 1.
uEv a’=O

Both (82) and (84) hold almost everywhere if 0 < v(7) < 1.
Let {Ik} denote the set of intervals on which 7 7(r(7)) defined in

Lemma 4. Lemma 3 asserts that v(v) 1 almost everywhere on I.
This and (75) imply that , for i 1, n, and z(7) are constant on
I. The function 7(7) is constant on Ik from the definition of I and
u(n) has been assumed to be constant on I. Hence, the continuity of the
quantities involved and the assumption on u(7) imply (84) and (85)
hold everywhere on I.

Let x(t) z((t)), u(t) u(7(t)), and .(t) $(7(t)), j 0,
1, n + 1. Let C and D denote, respectively, the sets on which (72)
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(73) and (84), (85) do not hold. Since r is one-to-one and v(r(v)) v
on the complement of [J -k, and (84) and (85) hold on U -k, r-I(c) D.
Now, D is the union of a set of Lebesgue measure zero and a set on which
v(/) 0. Hence t(C) 0.
Let E and F denote, respectively, the sets on which (70), (71) and (82),

(83) do not hold. Since v(r(v)) v if v I.J Ik, E c z(([J Ik) I.J F).
Since (I.J I) LI F is the union of a set of measure zero and a set on which
v() 1, (28) implies

(86) f dt _-< f( (1 v()) d O.
Uz)UF

Using Lemma 3, Lemma 1, (65), (26), and (28), formulas (68) and
(69) may be shown to follow from (75) and (76) by the same change of
variables used in Theorem 2. Let tl r(vl). Since ,(v) 0 if v > w,
/(t) v(r()) 71. Hence, (77) implies (74).

Remarks on the computation of . Since g does not appear explicitly
in relations (68)-(74), it might be thought that they do not furnish in-
formation on the determination of t. This is not the case. Relations (71)
and (72) imply that

(87) mx g(t, u)((t) <= 0
uu j=O

lmost everywhere with respect to both Lebesgue and t mesure, and if A
is subset of

{(SS) t: max g(t, u),(t) <
uU j=O

that g(A 0. This implies that (87) must vanish at each impulse (atom)
of the measure g.

If (87) as a function of on [to, t] assumes a maximum of zero only a
finite number of times, the measure g must consist of a finite number of
impulses located at these maximum points. In some cases the magnitudes
of the impulses may be determined by the requirement that x(t) be a solu-
tion of (29) with the proper initial and terminal conditions for which (70)
holds.

If the restriction of g to an interval is absolutely continuous with respect
to Lebesgue measure and has a positive Radon-Nikodym derivative, (87)
and (88) imply that (72) must hold almost everywhere with respect to
Lebesgue measure on this interval. This furnishes an additional relation.
The simultaneous solution of this relation, together with (70) and tha
differential equations (68), (69), and (29), may determine g on this in-
terval.
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A COMMON FRAMEWORK FOR AUTOMATA THEORY AND
CONTROL THEORY*

MICHAEL A. ARBIB?
In the abstract theory of automata, our preoccupation is with machines

which carry out computations, or logical manipulations, on their inputs to
produce their outputs. Automata are digital, in that the inputs and outputs
are always assumed to come from some finite "alphabet" of symbols; and
the operation of the machines proceeds in discrete steps, i.e., at times

0, 1, 2, 3, on some suitable time scale.
In control theory, however, we consider the inputs of our machines as

variables which we may alter in such a way as to control the output or
"states" of our machine. Our preoccupation is with executing the control
in an economical manner, so as to minimize some "cost function." The
inputs and outputs are usually assumed to be continuously variable, and
in fact, to take values in some Euclidean space.

Despite the disparity in goals and assumptions, much of the basic
paratus is common to the two theories. In this paper we shall make explicit
this commonality, and thus provide a basis for later papers to exploit the
interaction between the two theories without duplicating basic material.
The paper falls into three sections: 1, States and semigroups; 2, Additivity
and duality; 3, Controllability and observability.

1. States and semigroups.
1.1. h system is, for us, something into which something (be it matter,

energy, or information) may be put at certain times, and which itself puts
out something at certain times. For instance we may think of an electric
circuit whose input is the setting on a rheostat and whose output is a cur-
rent reading. We may think of a network of switching elements whose in-
put is an on-off setting of a number of input switches, and whose output is
on-off pattern on an array of lights. In the first case we might think of the
time-scale as being continuous with the adjustment of the rheostat varying

* Received by the editors September 15, 1964, and in revised form February 9,
1965.
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continuously in time, whereas in the second case we may think of the time-
scale as being discrete, the input switches being set every 5 seconds, say.

In either case we think of the system S as having an associated time-scale
T. At each moment of time T, our system S receives some input i(t)
and emits some output o(t). We now assume that there is a fixed set I of
possible inputs, and that at any time t, the input i(t) may be chosen
bitrarily from I.

In general, the input segments of a system are not allowed to be arbitrary
functions i: [ta, tb) - I, but rather must belong to a restricted system D.
The set of outputs, 0, is to include all possible values of o(t) for all times
tT.
Now, we may not be able to predict o(t) without knowing more than

just what the present input is. The past history of the machine may have
altered S in such a way (e.g., by hysteresis in our first example; by setting
internal switches in our second example) as to modify the output. In other
words, the output of S is (not surprisingly) a function both of the input of
S, and of the history of S. We think of the state of a system as being some
attribute of the machine at the present moment which together with the
input determines the output (cf. [8, Chap. 1]). But to quality as the state
of S, it must have one more property, namely that the states and inputs
together suffice to determine subsequent states.
We thus demand that the set of internal states be sufficiently rich to

carry all the information about the past history of the machine needed
to predict the effect of the past upon the future.
We can now define a system as follows (where the time-scale T is usually

the half-line [0, ) or the discrete set 10, 1, 2, 3, ).
DEFINITION. A system S is a mathematical structure defined by the

following axioms"
AS1 There is given a state-space Q and a set of values of time T at which

the behavior of the system is defined; T is a ordered subsemigroup
(under addition) of the real numbers.

AS There is given a space I of admissible inputs to the systcm. An ipu
segment i0, is a mapping i" [to, t) -- I. If [t, t) [/0, t), we
i[tl,t) i Its,

There is given a set D of admissible input segments subjec to the con-

ditions
(a) D contains all constant functions.

(b) Let E1 and E be disjoint unions of intervals, whose union is the

We do not consider stochastic systems here. See, however, [1, 8].
These are the input conditions for the proof of the Pontryagin maximum principle

used in [9].
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interval [t, t,). Then if it.t) and i[t,t.) belong to D, so does
x(E)i + x(E)i.
There is also given u spnce 0 of ndmissible outputs.

AS For any initial time to in T, ny initial state q(to) in Q, any input seg-
ment ito,t), >= to, from D, the state q(t) nd the output o(t) of the
system S at time re determined by the functions h and ti according to
the scheme

(1.1)
q(t) h(q(to), ito,t) to) Q,

o(t) (q(to), ito.t) to) O,

i.e., ): Q X D X 7’ -- Q nd : Q X D X T-- 0. Moreover, for any
fixed to _-< t =< in T, and ny q in Q nd ny fixed input segment i:
[to, t) -- I, the following relations hold

h(q, i[to,to) ;to) q,

(q, io,) to) (},(q, io.); t0), i,);t),
(1.2)

(q, ito.t) to) (h(q, ito,t,) to), it,t) t).

We shall denote such n S by the quintuple (D, O, Q, },, ). This formula-
tion clearly generalizes the definition of dynamical system in [2, p. 154]. It
is clear from (1.1) that the system is non-anticipatory--the vlues of i
after time do not uffect its behavior up to time r. In all that follows we
shall consider only time-invrint systems, which we define next.

DEFINITION. A system S issid to be time-invariant if i(to - ) i(o + )
for 0 =< t to implies

h(q,i[to,ti) ;to) X(q,[o,) ;o),
(q, ito,t) to) (q, i0,,) o)

for all to =< t, all o, ull q Q, nd all input segments i" [to, t.) -. 1 (sub-
ject to h to -t- 0; :rod that he 0- totranslteof[to,t) 7’
is jllSt [0, 1) ["] T).

For the time-invariant systems we drop explicit mention in X and 6 of
the time-variable, and usually consider the input segment of the second
variable as defined on a suitable time-interval [0, t).
We now list a few basic definitions, and some simple assertions whose

easy proofs are left to the reader.
DnFINTON. Two states q and q’ belonging to systems S and S’ (where

S and S may or may not be identical but have common D and 0) are said
1o be equivalent if ad ofly if for all input segments i[to,t) from D the re-
sponse segment of S starting on state q is identical with the response seg-

This is satisfied for our usual choices of T, and positive i0 to it T.
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merit of S’ starting in state q’, i.e.,

q -- q’** (q; i0,)) ’(q’; i0,))

for all times t, to (to =< t) and all input segments itto,O of S and S’.
DEFINITION. A system S is in reduced form if there are no distinct states

in its state space which are equivalent to each other.
ASSERTION. If q and q’ are equivalent, so are the states into which they

are taken by any input segment of S and S’.
DEFINITION. A state q’ of S is reachable from a state q of S if and ofly if

there exists an input segment ito,t) in D such that q’ X(q, itto,t)).
DEFINITION. S is said to be strongly connected if every state is reachable

from every other state.
DEFINITION. Systems S and S’ are equivalent, S =-- S’, if and only if to

every state in the state-space of S there corresponds an equivMent state
in the state-space of S’, and vice-versa.

1.2. Our systems become the automata of automata theory if we quantize
time and study the behavior of our systems at successive moments,

0, 1, 2, 3, on some appropriate discrete time-scale, and further
require that the input and output sets be finite.
Note that the conditions of AS2 for a discrete time scale merely assert

that every input segment is admissible. Hence, in this case, we need merely
give I to determine D.
We shall not necessarily demand that there be only finitely many states.

If Q does have but finitely many members, we shall say that M is a finite
automaton or finite-state machine. It will be a question of interest to ask:
"Given an automaton, does there exist an equivalent finite automaton?"
Our generM considerations then yield the following definition.

DEFINITION. An automaton is a quintuple M (I, 0, Q, X, ti), where

I is a finite set: "the set of inputs",
0 is a finite set" "the set of outputs",
Q is a set: ’"the set of states",
X: Q X I -- Q: "the next-state function",
: Q I --, 0: "the next-output function."

We interpret this formM quintuple as being a mathematical description
of a machine which, if at time is in state q and receives input i, will at
time q- 1 be in state X(q, i) and will emit output 8(q, i).

Let us contrast this situation with that in control theory. Here time is
usually regarded as continuous, i.e., we regard T as an interval of the
real line, e.g., T [0, ). I, O, and Q are then regarded as finite-dimensional
Euclidean spaces (or even as Banaeh spaces). What makes a system S a
control system., however, is not so much these choices of T, I, 0 and Q but
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rather that we associate with its operation some cost-function, and study
problems of the kind "choose inputs to bring the system S from state q0 to
state ql with minimum cost." The cost may (of course) involve time,
energy, money, etc.

Quite apart from the differences in motivation, we should also point out
the differences in technique:
Automata theory emphasizes the algebraic and combinatorial aspects.
Control theory emphasizes the analytical techniques.
The mutual development of the two theories within the common frame-

work developed here will thus savor much of the interplay within group
theory between the algebraic theory of finite groups and the analytic theory
of Lie groups.

1.3. We devote the remainder of this section to developing for systems
in general a number of ideas usually met with only in automata theory, as
prolegomena to the semigroup theory of machines.
For definiteness, we now assume T to be either 10, 1, 2, 3, or [0, ).

We define to be the set of finite initial segments of T, i.e.,

{0,1,2,3,... }^ {10,1,2,... ,n} In 0,1,2,3,... },

[0, {[0,  )la ->_ 0}.

Adopting the notation [a,b) {t T]a =<-t < b}, we have that
[0, n) {0, 1,.-. n 1} if T {0, 1, 2, 3,.-. }, whereas [0, b) is the
usual halfopen interval if T is the real halfline. Then {[0, t) It C T}.
Given T and a set A, we define A e to be simply the set of all functions
from to A. If a" [0, a) -- A, " [0, b) - A, then we define

by

a." [0, a + b) -- A
a.(t) \(t a)

if O < a,
if a<=t<a+b.

A. is clearly a semigroup under this operation, and has for identity the
null-function e- --* A. If a is defined on [a, b) we set l(a) b a, the
"length" of a.

In the remainder of this section, we assume that our set D of admissible
initial input segments is a subsenigroup I* of I.

Or, as M. P. Schutzenberger would insist, the monoid theory, since all our semi-
groups have identities, but no topological structure. A semigroup for us is just a set
on which is defined binary associative operation, (xy)z x (yz).

This definition is appropriate for time-invariant systems. In the general case, we
would have to consider I[a,b) la < b,a,b T} nddefinea.onlyincse a

is defined on [a, c) and fl on [c, b) for some a, b nd mutual c.
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In case T is the real hairline, we would thus admit piecewise continuous
inputs here, but not continuous input segments.

In case T /0, 1, 2, 3, }, I* is the familiar "free semigroup on I,"
consisting of finite sequences of elements of I, composed under
concatenation.
Reexamining (1.1), we see that a time-invariant system is really defined

by two functions

Q I* ---> Q,
(1.3) : Q )< I* --> O.

For an automaton, we re given the state-transition and output functions
as h: Q X I -- Q, ti: Q X I - 0, but these extend immediately to the form
(1.3), in which we shall feel free to use them.
Returning now to our general time-invarint systems, we see that (1.2)

becomes

),(,(q,x),y) )(q, xy) for all q Q, x,y I*.
The input-output function of the time-invrint system S when started

in state q is the function

Sq I* -- 0defined by Sq(x) (q, x) for x I*. Defining L,(x) yx for all y, x I*
nd noting that (q, yx) (,(q, y), x), we see that

S,(q.,)(x) ()(q, y), x) (q, yx) Sq(yX) SqL(x).

Thus

,(q,y)-- SqLy.

When our interest in a system is iu how i transforms input-sequences into
output-sequences, ll that we wish to know bout q is contained in the func-
tion Sq. Returning to our notion of system equivalence, we then have
the following.

ASSERTION. Given two time-invariunt systems S nd S’ with stute-sets
Q and Q’, respectively, then they are equivalent if and only if

{Sq]q E Q} {Sr’[r E

Clearly, we also have the following.
ASSERTION. S is a system in reduced form if and only if q -- Sq is a

1-1 mapping. We sy S is stute-output system if there is function i:
Q -- 0 such that (q, x) i()(q, x)), i.e., the output depends only on the
state at a given time.
ASSETmN. Let S (I*, 0, Q, ),, t). Then there exists a reduced stnte-
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output system equivalent to S. One such system is given by S, termed the
state-output reduction of S, where

S (I*, 0, Q, h, i.h),

where

QO {Slq Q},

),(q,x) qL for q Q,

i(q) q(e),

i(L) (q, x).

In the case of a finite automaton, the reduction is again a finite automaton.
The reader au fait with linear systems will recognize (cf. 2) that the
reduction of a linear system with state space Q E will be a linear system
with state space E (m -< n). However, for a nonlinear system with state-
space En, the reduced system is often not of interest, since the reduction
may well destroy the Euclidean topology.
We close this section with the definition of the semigroup of the system S.

First we recall that an equivalence on a semigroup A is called a congru-
ence if

x yxz ==-- yz, x- y-zx--- zy, for allx, y,z A;

in which case we may define the factor semigroup A/== to have elements
[x]_, the equivalence classes under ---, with multiplicatio defined by
[x][y]_-= [xy]_=__. Given the system S (l*, 0, Q, h, t), we define an equiva-
lence --s on the semigroup I* by

x--y if andonlyif S(uxv) Sq(Uy) for all q Q, u,v I*.

This is clearly a congruence, and so we my define the semigroup of the
system S to be the factor semigroup I*/---.

For a low-level exposition of further bsic notions of automata semigroup
theory, see [1]. The reader may find it an easy exercise to extend it to general
systems, in the fashion of our present treatment. To see these notions "in
action," the reader should consult the papers of Krohn and Rhodes [5]
and of Schutzenberger [7].

R. E. Klmn conments: "If the semigroup is simple, we hve the abstract gen-
eralization of n eigenvlue (when clculating in the complex field) or of first- or
second-.order (with complex eigenvlues) linear system, when clculting in the rel
field. Similar ideas concerning the structure of Lie groups are well known. (See, e.g.,
K. T. Chen, Mth. Ann., 146 (1962), pp. 263-278.)"
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2. Additivity and duality.
2.1. So much of modern mathematics--from the humble matrix to the

most abstract Banach space--is preoccupied with Iinearity that it is not
surprising that linear systems have been much studied by control theorists.
In control theory, the spaces I, 0 and Q are usually Euclidean, and the
theory of linear systems is erected on this basis. Our contribution in this
section is to develop some of the basic theory using only the group property
of the relevant spaces.

Thus, save in our treatment of duality for automata, we shall assume in
this section that I, O, and Q are abelian groups, and use -t- for the group
operations. Since we make no use of scalar multiplication, we shall use
"additivity" to refer to our various analogues of the elassieal linearity.

DEFINITION. A state 0 of the system S is a zero state if

(0,0) 0 for all t,

where 0 is the zero-input, 0e: [0, t) --* 0 defined by 0e(r) 0.
DEFINITION. The system S is zero-state additive if

(0, ) (0, ) (0, )

for all a, B I* with l(a) l(B), and with 0 the zero-state of S.
DEFINITION. The system S is additive with respect to an initial state q

if and only if

(q, u) (q, v) (e, u v)

for all u, v 1" with l(u) l(v).
ASSERTION. If S is zero-state linear, then it is also linear with respect to

all states which are reachable from the zero-state.
DEFINITION. A system S is zero-input additive if and only if

0 q" ,,
(q, )-(,0) =(q -q,

qfor all q, Q, 0.
We now have the crucial definition.
DEFITION. The system S is additive if and only if

(i) S is additive with respect to all states of Q,
(ii) S is zero-input additive.
We immediately have"
THEOriES. A system S is additive if and only if it has the following three

properties"

For a treatment of linear systems, see, e.g., [8]. Linear automata seem to have
been studied only when the state-space is a vector-space over a finite field--for a
review and extensive bibliography, see Gill’s contribution to System Theory (ed., L. A.
Zadeh).
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(A.1) The decomposition property:/t(q, u) (q, 0*()) --/t(0, u),
(A.2) Zero-state linearity O, x y) 0, x) O, y (1 x y
(A.3) Zero-input linearity: (q q 0t) (q’, 0t) (q", Or).
ASSERTION. If S has the decomposition property, state q’ is equivalent

to state q" if and only if

0(q,0) i(q", for all >_- 0.
t! I!Since/t(q’- q ,x) /l(q’- q ,0) -[- /f(0, x) /t(q’,0) (q ,0)

q- (0, x), we see further that two states are equivalent if and only if their
difference is equivalent to the zero-state.
LrMMA. The states equivalent to the zero-state form a normal subgroup N

of the group Q of states.
Proof. If r, s N, then r s N, since

/t(r s, x) (0, x) for all x I*
i.e., N is a subgroup. But N is also normal, since Q is abelian.

ASSEnTION. If q is equivalent to q’, and if x I*, then

},(q, x) (q’, x) N.

Thus we may set up the factor group Q/N. The elements of Q/N are
the equivalence classes of states of S. Hence the reduced system of S is
simply

where

,S (I*, O, Q/N, X, i),

x([q], x) IX(q, x)], o([q], x) (q,

COROLLARY. An additive automaton is equivalent to a finite-state machine if
and only if Q/N is a finite group.

DEFINITION. An additive system is said to be completely additive if each
of the three properties (A.1-3) of an additive system still holds on replacing
byX.
A routine proof yields the following.
THEOriES. A system M (I*, O, Q, , ) operating on T IO, 1, 2,

for abelian groups is completely additive if and only if there exist
homomorphisms

A" Q --> Q, B" I -- Q,

C" Q --->0, D" I---> O,

such that, for all q Q, x I, we have

(2.1)
X(q, x) Aq z7 Bx,

(q, x) Cq z7 Dx.
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We then have

(q, xlx2 x,) A’q -? A’-IBXn_m.at_
m--l

(2.2) ,-
it (q, xx x,) CA’-q -t-

_
m--iCA Bx,_m + Dx,.

m=l

(Clearly conditions 1 to 3 for , and ti are all satisfied.)
Let us set,

(n) CAn-l,
if m 0,h m CA’-B if m> 0.

We then have
n--1

((q, XOI Xn--1) (n)q -[- h(m)x,_,,
m---O

2.2. Now the passage from additive systems to the usual linear systems
consists in
(i) replacing group homomorphisms by vector space homomorphisms,
(ii) replacing discrete time by continuous time.
And thus we get a linear system S with state-space Q E" and time
T [0, ) described by

y(t) ,(t- to)x(to) -t- h(t- )u() d, >= to,

where the p-vector y(t) is the output at time t, the n-vector x(t) is the
state at time t, the r-vector u(t) is the input at time t, (t) is the state-
transition matrix whose ith column is the response of S at time to zero-
input when started in state (0, 1, 0) (1 in ith place), and h(t)
is the impulse response of S, i.e., response of S when started in the zero-
state, to the impulse input

fDirac delta function for T [0, ),ti(t) [.Kronecker delta i0t for T /0, 1, 2, 3, }.

If is differentiable, and h is unsullied by delta-functions or their deriva-
rives, we may refer to S as a linear differential system. Then the state equa-
tions of S in differential form read [8, 3.7]:

+/-(t) (i)(O)x(t) -[- h(O+)u(t),

y(t) ((I)(0), x(t) ),

and the state at time is given by
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x(t) O(t- to)x(to) + f h(t )u() d, >__ to,

where h(t) is the state impulse response given by

h(t) 1hh(t) (t)

j,h(,,-i) (t)
t>=O;

h(t) x(t)]x(O-)=o,(t)=(t) for all => 0,

and o(t) is the state transition matrix and satisfies

,i,(t) ,i,(o)o(t), o(0) I.

The state impulse response h(t) is related to the state transition matrix
O(t) by the equation

h(t) l(t)O(t)h(0+).

The input-output-state relation

(2.3) y(t) (+(t to), x(to)} + f h(t )u() d

and the state equations

x(t) o(t- t0)x(t0)+ ft
at

y(t) (+(0), x(t)>,

h(t )u() d,

hold for all and l0 provided the basis functions 4)1,’", 4),, the state
transition matrix O(t), the impulse response h(t), and the state impulse
response h(t) are understood to be extended rather than one-sided.

o(-t) o-l(t).
The extended state impulse response is given in. terms of the extended
.(t) by

h(t) o(t)h(O).

Correspondingly, the extended basis functions and the impulse response
are given by the elements of the first row of the extended O(t) and h(t),
respectively.
COIOLIAIY [8, 3.7]. If S is characterized by an input-output-state relation

of the form (2.3)--which implies that S is in reduced formthen S is initial
state determinable in the following sense: Given u(t0,t] and y(to,t] one can
uniquely determine the initial state x(t0).
Roughly speaking then: linear differential systems are reversible.
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DEFINITION. The two systems of equations

A()x
and

-A*(t)y,
where. A*(t) is the conjugate transpose of A(t), are said to be adjoint to
one another.
THEOREM [8, 6.2]. Let T(t, to) be the state transition matrix of the adjoint

system, i.e.,

_d (t, to) -A*()(, 0) (, 0) L
dt

Then g*(t, to)O(t, to) I for all and to. Thus

(2.) ,*(t, to) ,t,(t, to)- (to, t).

Conversely, if this holds, then the corresponding systems are adjoint.
DnTO. Let the linear system S have rea.l-wlued impulse response

h(t, ). The linear system S() is sid to be the adjoint of S if its impulse
response h() (t, ) satisfies the relation

(2.5) h(a)(t, ) h(, t) for M1 t, ,
where h() (t, ) is the response of S(a) t time to unit impulse pplied
at time . Thus (2.5) implies that S(a) hs response t time to unit
impulse pplied t time $ equnl to the response of S t time to n unit
impulse applied at time t.
Note that, in generM, if S is non-nticipatory then. S(a) hs to be nticip-

toryi.e., the present output of S(a) depends on future inputs!
Consider now the equations

+/- Ax + Bu,
(2.6)

y Cx + Du.

They have the solution

O(t- to)x(to) + ] O(t- ,)B(r)u(,)dr,
et

nd thus the impulse-response matrix for input (t to) is simply

Similarly the system

(2.7)

h(t, to) C(t)o(t- to)B(to).
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has impulse-response matrix to input g(t to) as

h(a)(t, to) B*(t),(t- to)C*(to).
Thus

(2.8) h(a)(t, to) h(t0, t)*.
We accept (2.8) as the appropriate generalization of (2.5) to a system with
multi-dimensional output, and say that the system (2.7) is the adjoint of
system (2.6). (A possible alternative has the signs of B* and C* changed.)

2.3. In automata theory, duality has been little studied. The only in-
teresting example I know of is given by Rabin and Scott [6]. We shall
slightly modify their definition to ease our later discussion.

DEFINITION. Given M (I, 0, Q, h, ti) with Q /ql, "’", ql, let
]l (I, 0, Q, h*,/t*), where Q is the set of subsets of Q, 0 i.s the set of
subsets of 0,

h*(q*, x) U {t Q (t, x) q},
qq*

*(q*, ) U l(t, x) Ix(t, x) q}.
qq*

M*, the dual of M, is defined to be restricted to those states reachable
from at least one of the states {q},

In general, if M has n states, then M* has of the order of 2 states--i.e.,
the state space "blows up" under taking of duals. It is of some interest to
know when we can preserve the state-space, as is possible with linear sys-
tems. Now" M* has states

q’ I*{q,}, {q.} - for all q, Q, x ;h(q, x) h(q, x) im-
plies q q

q: for all q, Q,i I;h(q,i) h(q,i) implies
q q’

: each h(-, i)" Q -- Q is a permutation.

If this is the case, we may identify M* with

M" (I, 0, Q,

where "(q x) is the unique q for which h (q’ x) q and then ti" (q, x)
ti(q’, x). We shall say that M is reversible and that MR is the reverse of M.

Clearly (MR) R M.
ASSEnTION. M* has the same number of states as M if and only if M is

reversible. Then M* MR.
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ASSERTION. If M is reversible and there is a state q from which all states
of M are reachable, then M is strongly connected.
We should contrast our notion of reversible automata with the general

ideas of a converse system (cf. [8, 2.10]).
DEFINITION. ( and ( are converse systems if every input-output pair

(u, y) for a has the property that (y, u) (with y as input and u as output)
is an input-output pair for (R), and vice versa.
THEOREM. The converse of a finite automaton is not necessarily finite-

state.
Proof. Let M be a finite automaton with m inputs and n outputs, but

let n < m.
Then M has mk input sequences of length k and at most nk output se-

quences of length k.
(xl...xk, yl’" y) is an input-output pair for M if there exists a

state q of M such that

(2.9) y. (q, x x,) for 1 < n __< ].

Let Mc be the converse of M (it may not be completely specified). If
M has a finite number of states, then (2.9) implies m <= rn, so that
r >- (m/n). Letting ]c increase, we get a contradiction.

In mathematics, if M** is the dual of the dual of some system M, then
usually M is isomorphic either to M** or to some subsystem of M**. Thus,
in automt theory, we might be tempted to claim that M is equivalent to
the smallest submachine of M** whose states include q} }, ", q} }. Cll
it . However a state/q} is not in general reachable from other states of
M*the reversing action of a nonreversible machine in general increases
the cardinality of a state-set at each transition. This means that in general,
h**({{q}}, x) , which is not interesting. To see this, let us follow a
computation:

h**(R, x) (J {Q’ <= Q I,*(Q’, x) T},

where

h*(Q’, x) [J {q Q l(q,x) q’}.
q’O’

If R l{q}}, then

h**(R, x) {Q’ -< Q Ih*(Q’, x) {q}}.

But

{q} (J {q Q lh(q,x) q’}
qQ

I.e., there is a q Q( such that y(t) i((q, Uio.t)).
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if and only if (a) Q’ {X(q, x)} and (b) X(q, x) X(qi, x) implies
q qi. We thus arrive at the following result.
THEOREM. M is isomorphic to the submachine 2I of M** if and only if M

is reversible.

3. Controllability and observability.
3.1. A new domain of study in control theory is that of controllability

and observability. The basic work here (cf. [2], [3], [4]) has been in terms
of linear differential systems S described by such equations as

+/- Ax -t- Bu,
(3.1)

y Cx -t- Du,

where A, B, C, D are, respectively, n X n, n X r, p X n and p X r matrices.
The n-vector x is the state of the system, the r-vector u is the input, and
the p-vector y is the output of S.
In our treatment we shall present as much of the theory as possible in a

form applicable to general systems (and so, in particular, to automata).
Many results will turn out to require only our additivity conditions rather
than the linearity conditions used elsewhere.
We say a state q is controllable if we may so choose the input as to bring

our system from q to the zero state. More formMly, for any system S with
a designated stute 0, we have the following definition.

DEFINITION. State q of system S is controllable if and only if there exists
u I* such that

X(q; u) O.

The system S is said to be controllable if and only if every state of S is
controllable.

ASSERTION. If S is a system in which every state is reachable from 0,
then" S is controllable =, S is strongly connected.

Let us recall the additive system M of (2.1). It is reversible (cf. (2.8))
if for each x, X(., x) is invertible, i.e., if for each r Q, there is a unique
solution of

Aq r Bx,

i.e., if and only if A is an automorphism of Q with inverse A-I, say. Then
define

X(r, x) A-lr A-1Bx,
ti’(r, x) i(X’(r, x), x)

C[A-1 (r Bx) + Dx

CA-It + [D CA-1B]x.
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Then MR (I, 0, Q, hR, tiR) is also completely linear. Note that we do
indeed have MRR M since

(A-1)-1 A, CA-1AA-1B CA-1B -q- D D, etc.

Now, our last assertion tells us that the reversible machine M is controllable
if and only if all states can be reached from the zero-state. Consulting (2.2)
we immediately have the following result.
THEOREM. A reversible completely additive system is controllable if and only

if each state q can be represented as a linear combination

A"-IBx, x I.

Turning now to the system (3.1) and recalling that the power A" of
an n X n matrix may be represented as a linear combination of I, A,
A2, An-, we have "essentially" proved:
THEOREM 3.1 [3, p. 201]. The system S of (3.1) is controllable if and only

iJ the column vectors of the matrix

[B, AB, A’-B]
span the state-space of S.
Turning to observability, we formulate the general definition:
DEFINITION. S is observable if and only if it is in reduced form.
Now we know that our completely additive system (2.1) is in reduced

form only if N {0}--i.e., the zero state is only equivalent to itself. But
inspecting (2.2) we obtain the next result.
THEOREM. The completely additive system S is observable if and only if

CA-iq 0 for all 1 q O.

This "immediately" yields the familiar consequence:
COROLLARY 3.2 [8, 11.4]. The system S of (3.1) is observable if and only if

the column vectors of the matrix

[C*, A’C*, A*("-)C*]
span the state-space of S.
Theorem 3.1 and Corollary 3.2 combine to give the following result.
KALMAN DUALITY THEOREM. Let be the system dual to S of (3.1); it is

defined by

-A* + C’v,
n B*- D’v,

where the slate is an n-vector, the input v is a p-vector, and the output n is an
r-vector. Then S is controllable (respectively, observable) if and only if is
observable (respectively, controllable).
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Recalling our discussion of the reduced form of an additive system, we
see the following.
THEOREM. An additive system with state group Q, and subgroup N of states

equivalent to the zero-state, can be partitioned into two subsystems $1, which
is observable, and S which is unobservable, if and only if

Q N Q/N,

i.e., the decomposition of Q by N splits.
Note that we have only used conditions (i) and (ii) in the definition of

additive systems. In the case of linear systems, Q becomes a linear vector
space, and N becomes a subspace--and such a decomposition always splits.
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THE GENERALIZED LIENARD EQUATION*

T. A. BURTON
1. Introduction. Consider the generalized Lienrd equation

2 + f(x, 2) - g(x) O,

---y,
(2)

9 --f(x, y) g(x),

where

xg(x) > 0 if x 0,
(3)

yf(x, y) > 0 if y 0.

Assume that f and g satisfy a Lipschitz condition with respect to x and y
throughout the plane.
We give sufficient conditions that the null solution to (2) be globally

asymptotically stable and necessary and sufficient conditions that the
null solution to

2=y,
(4)

--p(x)l y lay g(x),

be globally asymptotically stable when p(x) > 0 and 0 _<_ a < 1.
A good summary of results regarding the stability properties of the null

solution to (1) may be found in either [1] or [2, pp. 139-156]. Although a

great deal of work has been done on (1), the main result on global asymp-
totic stability of the null solution is embodied in the following theorem by
Bushaw [1, pp. 17-18].

THEOREM. If g u du "- as xl -- -- then the null solution

for (2) is globally asymptotically stable.
Notable in this theorem is the fact that no mention is made of f(x, y)

(except for (3)). Bashaw has proposed that a similar theorem might be
proved without using this hypothesis, but adds that o one seems to have
done it [1, p. 31]. We are able to prove the same result by imposing a con-
ditioa on f with none on g (except (3)).

* :Received by the editors February 18, 1965, and in revised form March 1, 1965.
[ Department of Mathematics, University of Alberta, Edmonton, Alberta.
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2. Preliminaries. In order to avoid certain difficulties later, we state
the following for reference [1, pp. 13, 16].
THEOREM. If f x, y) + g x is continuous everywhere, and to, Xo and

yo are any real numbers, then (2) has a solution (x (t), y (t) which"
(a) is defined over an interval t_ <= <- t where t-1 < to < t
(b) satisfies the initial conditions x(to) xo y(to) yo
(c) (ill(x, y) + g(x) is Lipschitzian) is unique; and
(d) (if (3) holds) may be continued over the interval t_ <= < .
L 1. Equations (2) have the following properties.

(i) The null solution is asymptotically stable.
(ii) For any (xo, yo), the solution (x(t), y(t)) through (xo, yo) satisfies
[y(t) -<- k(x0, y0) for all >= O.
(iii) Every bounded solution tends to (0, O) as -- .Proof. For (x, y) sufficiently close to (0, 0),

V(x, y) Y fo+ g(u) u

is a positive definite function. Also

dV
dt

-yf(z, y) <= O,

so (0, 0) is Lyapunov stable.
The following result will be used to complete the proof.
THEOREM [3, p. 66]. Let V(x, y) be a scalar function with continuous first

partial derivatives for all (x, y). Suppose that V(x, y) > Ofor all (x, y) (0, O)
and dV/dt <= O. Let E be the locus dV/dt 0 and M be the largest in-
variant set contained in E. Then all solutions bounded for > 0 tend to M
as t---. .
Now there exists a constant A > 0 such that the locus

V(x, y) Y font- g(u) du A

is a simple closed curve L. For any (x, y inside L we have V(x, < A
yt ytand for any (x’, outside L we have V(x’, > A SincedV/dt < 0

no solution starting inside L crosses L for > 0. So 2 y and the locus
of dV/dt 0 is the y-axis; thus M is the origin. Hence (0, 0) is asymp-
totically stable.
Although there may exist B > A such that the locus V(x, y) B is

not a simple closed curve, V -- m as Yl -- and dV/dt <= O, so there
exists k(Xo, yo) for each (x0, y0) such that ]y(t)] =< k(x0, Y0) for all
t>0.

This theorem explicitly covers part (iii) of the lemma.
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3. Analysis of (2).
THEOREM 1. If there exists a nonnegative continuous function h(x) satisfy-

ing

f(x, y) + g(x) >= h(x)
Y

for (x, y) in quadrants I and III with

h(u) du---+ 4- as

then (0, O) is globally asymptotically stable.
Remark. This assumption may appear somewhat unnatural and can be

replaced by the weaker orm If(x, y) >= h(x)ly I. If (1) hs the form

+ h(x) + g(x) O,

then the statement is perfectly straightforward. Either of these two forms,
however, seriously weakens the result.

Proof of Theorem 1. Using Lemma 1 we see that we need only prove
boundedness of solutions. Let (x0, y0) be any point and (x(t), y(t)) the
solution through it. By Lemma 1 there is some/(x0, y0) bounding y(t) I.
We shall bound the solution within a simple closed curve. From (2) we
obtain

d_fly -[f(x, y) -+- g(x)]
dx y

which defines the slope of the orbits (pths of solutions). By ussumptio.
there exists h(x) >= 0 such that dy/dx <= -h(x) ia quadrants I and III.
Now 2 y, so for y > 0 the solution moves iom left to right. Consider
the curve defined by

y h(t) dt + }(Xo, yo)

starting at ([ x01, /(x0, y0)). It, intersects the x-axis at (x, 0) for some

> 0 silce .]. h(t) dt ---+ as x . This curve bounds (x(t), y(t))Xl

above and to the right since dy/dx <= h (x) and y(t) <__ / (x0, yo). For
y < 0 the direction of the field is to the left since 2 y, so continue this
curve by drawing a vertical line from (x 0) to (x, -/c(x0, yo)). Then
continue with a horizontal line to (-I x0 I, -/(x0 y0)). The curve from
this last point defined by

h(t) dt k(Xo, yo)
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bounds the solution on the left and intersects the negative x-axis at(x, 0).
Continue with a vertical line to (x, k(xo, y0)). The horizontal line
from (x,/c(x0, y0)) to (I x0 I,/c(x0, y0)) completes the curve bounding the
solution. Application of Lemma 1 completes the proof.
THEOaE 2. Let

inf If(x y)[ h(y).

y dy
h(y)

is finite for every finite B, then the null solution to (2) is globally asymp-
totically stable.

Proof. By Lemma 1 we need only show boundedness. Let (x0, y0) be
any point in the plane. From (2) we obtain the differential equation for the
orbits

dy _f(x, y) + g(x)
dx y

By assumption, in quadrant I we have

-If(x, y) + g(x)]/y < -h(y)/y.

Since 2 y, every solution ia quadrant I moves from left to right. Also
Y (t) <= k (x0, y0) for all > 0, so the curve defined by

u udu
k(o, yo) h(u)

-x + Ix0

bounds (x(t), y(t) on the right in quadrant I. Since the integral is bounded,
this curve crosses the x-axis at some point (x, 0).
Thus if the solution enters quadrant I it also enters quadrant IV. Now in

quadrants IV and III every solution moves from right to left since 2 y.
Contime the curve vertically from (x, 0) to (x, ,k(x0, y0)) and from
there horizontally to (-I x0 I, -/(x, y0)). Then continue with the curve
defined by

u u du
-(o,o) h(u) --x -- xo ],

which bounds the solution on the left and intersects the negative x-axis
at (x, 0) since the integral is bounded. Continue the curve with a vertical
line to (x, k(0, y0)) and then with a horizontal line to (1 x01,/(x0, y0)).
This simple closed curve burds ((t), y(t)), and so the null solution of
(2) is globally asymptotically stable.
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4. Analysis of (4).
THEOREM 3. Let 0 <= a < 1. The null solution to (4) is globally asymp-

totically stable if and only if

fo [p(x) + g(x) ]] dx

Proof. Suppose the integrals diverge. Let (Xo, y0) be any point and
(x(t), y(t)) the solution through it. By Lemma 1 there is some/(x0, y0)
bounding Y(t) I. Just as before, we shall construct a simple closed curve
bounding the solution.
The orbits of (4) are given by

(5)
dx y

For (x, y) in quadrants I and III we have

(6) dx

(7) dy <_ g(x)
dx- y

The proof is exactly the same as that of Theorem 1, so we shall oifly
show that the curve can be constructed in quadrant I.

Assume first that J, p(z) dz . Consider the curve starting at

(I x0 I, k (x0, y0) defined by

(S) u du p(u) du
(xo,yo) xol

obtained from (6). There are two possibilities. If a 0, then (8) becomes

y /(Xo, Yo) --f p(u) du.

Since the integral diverges this curve intersects the positive x-axis at some
point (xl, 0). By (6) the solution is bounded from above and to the right
by this curve. If 0 < a < 1, then (8) becomes

y-"+l k(x0, y0) -"+1 f* p(u) du.
--a d- 1 --a d- 1 Jlxol

Since 0 < a < 1, this curve also intersects the positive x-axis.

NOW assume that fo g(x) dx . From (7) we obtain
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y:-- ]C(Xo, yo)-- --2 g(u) du,

which defines a curve starting at ([ xo I, k(xo, yo)). This curve bounds the
solutio from above and to the right and intersects the positive x-axis.
The arguments for obtaining the curve in quadrant III are just the same.

The simple closed curve obtaited bounds the solution and proves the suf-
ficiency of the statement.
Assume that the null solutio is globally asymptotically stable. We shall

show that the integrals must diverge. We prove the statement only for

f0 [P (x) g x)] < , proof+ dx Sl]Ce the other is symmetric and is

carried out in quadrant III.
Let (x0, y0) be a point it quadrant I with x0 > 0 and arbitrary, but

y0 large and to be specified later. We shall bound the solution through
(x0, y0) below by a curve which never crosses the x-axis. This will show
that x(t) -- , contradicting the assumption.

Let r(x) p(x) -g(x). Since r(x) > p(x) and r(x) > g(x) for
x > 0, from (5) we obtain

d__y_ > -r(x) Y [" Y r(x) _r(x)[I y I" y + 1]
dx y Y

Consider the curve through (Xo, yo) defined by

UOf’l + 1
r(u) du.

xo

du
oU+l 1

diverges as yo --’ so if the curve is to intersect the positive x-axis for yo

as large as we please, then J r(u) du must diverge. This proves the

necessity of the condition.
We are unable to obtain such a sharp theorem for a ->_ 1, but some re-

sults can be given. Define

h(x) rain {p(x), Ig(x)l}

and

THEOREM 4. Let a >= 1. The null solution of (4) is globally asymptotically
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stable if
+/-

h(x) dx +/- .
Proof. From (5) we obtain

dy < _h(x)[lyly + 1]
dx y

for (x, y) in quadrant I. The curve through (I Xo I, ]c(xo, yo)) defined by

udu h(u) du
(o,uo) u+ -t- 1 Iol

bounds the solution through (x0, y0) from above ad to the right. Since
the integral on the left is bounded as y-- 0 for any finite/c(x0, y0), the
curve so defined crosses the positive x-axis. The remainder of the proof
proceeds just as in Theorem 1.

THEOREM 5. If a >= 1 and if either q(x) dx or q(x) dx converges,

then there exist unbounded solutions.

Proof. We prove the statemet only for Jo q(x)dx convergent.

From (5) we obtain

dy >_ q(x)[y,+l + 1]
dx- y

for (x, y) ia quadrant I. There exist e > 0, x0 > 0, and y0 > 0 such that

f y dy > 2.q(x) dx < e and
y"+ + 1xo

Thus the curve through (x0, y0) defined by

d ()d
ua+l + 1 xo

does not intersect the positive x-axis, but it bounds the solution to (4)
through (xo, y0) from below. Hence the solution becomes uabouded.

Remark. It is clear that the same treatment can be given for the stability
properties of

+ p(x)m(c) + g(x) O.
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OPTIMAL CONTROL THEORY FOR NONLINEAR VECTOR
DIFFERENTIAL EQUATIONS CONTAINING MEASURES*

W. W. SCHMAEDEKE
1. Introduction. In an ordinary optimum control problem, one is given a

real ordinary differential equation system

i 1,-’’ n,
dxi fi t, x, ..., x u, u ),(8)
dt

which is mthemtical model of some physical process. The problem of
control is to select the real functions u(t), j 1, m, (cMled control
vribles) on n interval of time to =< =< t such that the solution x(t)
of (8) behaves in prescribed manner on [to, t]. The usual prescribed be-
havior consists of requiring that the u(t) be found such that the solution
x(t) moves from some given initiM point x0 to prescribed moving target
G(t) so as to minimize some cost function or performance index. The control
problem for ($) hs been studied extensively; el. [1], [2], [6], and the bibli-
ographies contained therein.

This pper generalizes the results in [1] by considering in place of (8)
the system

(E) dx f(t, x, x, u, .., u") + g/(t) dudt
i 1, ...,n, j 1, ...,m

where a summation convention is implied for the last term with repeated
indices. Because it is a problem of great interest to consider the system ()
for instances in which the functions u(t) have discontinuities of the first
kind, it is necessary to develop a theory for treating (NZ) when impulse

du
control inputs represented by - arise. Accordingly, the functions uS(t)
are restricted to the class of functions of bounded variation and the deriva-
rives in (gg) are taken in the sense of distribution derivatives. Because the
distribution derivative of a function of bounded variation can be identified
with a Stieltjes measure, () is rewritten in the notation

* Received by the editors November 27, 1964.
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Nonr-3776(00). The results presented in this paper are contained in the doctoral
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gratefully acknowledges the inspiration provided by Professor L. Markus under
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) Dx f t, X ,...,x,u1,...,u’) +g/(t) Du,
and the equation is called a measure differential equation. The notation Dx
means the distribution derivative of x(t). For example, if

I1 or >- O,

0 for t< O,

then Du is the Dirac measure (t) (note that the ordinary derivative of
u(t) is the zero function almost everywhere). Thus the solution of

Dx 1 +(t) withx(O) 0

is

f0t f0 II for t=>0,x(t) dt+ du
1 for < 0.

This paper develops the theory of measure differential equations in a
manner entirely analogous to the theory of ordinary differential equations
as developed, for example, in [3] and [5]. 6 treats the problem of existence
of an optimM control for the system (), and Theorems 12 and 13 state
conditions such that, if there exists even one allowable control which com-
pels () to behave in the prescribed mnner, then an optimal control
will exist.

In 7, the opt,iml control problem is treuted for the ordinury system ($).
The replacement of the hypothesis that the class of Mlowab]e controls be
measurable by the hypothesis that they be of uniform bounded variation
with vMues in some subset of R allows one to relax the usual hypotheses
regarding the linearity of fi(t, x ).., x u,.-., u with respect to
u; of. [1].

2. Ordinary differential equations of the first order containing meas-
ures. In this section we study the problem of existence and uniqueness of a
solution of a measure differential equation. Before proceeding, we here set
the notation and recall some standard definitions. Let denote a single real
variable and let x denote a variable vector (x1, x x,..., in the real
n-dimensional number space R. Define the magnitude xl of x by

xl xll+ + x [. The class of m-times continuously differentiable
complex-valued functions in/ is denoted by C 0 =< m _<- , and the
subclass consisting of those functions which have compact support is de-
noted by C. The elements of the conjugate space of C are called dis-
tributions. Thus distributions are continuous linear functionals on Co.
The application of a distribution T to C is denoted by T(q) or T..
A measure is a totally additive complex-valued function defined on
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the bounded Borel sets of Rn, i.e., on all bounded sets which are obtained
from the open sets of R by taking countable unions of finite intersections.
There exists a one-to-one correspondence between measures and a linear
subset of the conjugate space of Cc given by

(2.1) t() J, dry(x).

A theorem of F. Riesz asserts that ny continuous linear functionM of C
cn be represented in the form (2.1) where (x) is measure. If T is a
distributiou identified with a measure and if a C, then aT is again
distribution defined by

(2.2) aT() T(a).

The derivative D,T or - of a disgribuion T is defined by

(2.3) D,T() --T(D,9).

If f is a complex-valued function defined on an interval I (interval as
used here shall aot include the degeerate case of a single point), the total
variation of f on I is defined by

N

(2.4) v(f, I) sup f(b) f(a,)],
i=l

where the supremum is taken over all finite sets of points a, b in I with
a < b < a <-.- < an < b. If v(f, I)is finite then f is said to be of
bounded variation on I. The space BV(I) is defined for an interval I and
consists of all scalar functions on I which are of bounded variation. If a is
the left endpoint of I, then the norm of f is

(2.5) IIfll v(f, I) + If(a+)I.
With this norm the space BV(I) is a Banch space. The space NBV(I)
is defined for an interval I and consists of those functions f in BV(I) which
are normalized by the requirement that f is continuous on the right at each
interior point of I and that f(a+) 0, where a is the left endpoint of I.
The norm of f is given by the equation

2.6) f i),

and with this norm, NBV(I) is a Banach space. If the function f(t) belong-
ing to BV(I) is continuous on the right at every point of the interval
I [a, b], then the measure function t([a, d]) f(d) f(a) and ( (c, d])

f(d) f(c) for a < c < d b has a regular countably additive extension
to the a-field 2; of all Borel sets in I. This extension is called the Borel-
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Stieltjes measure in I determined by the function f. Now let 2:* consist of
all sets of the form E U N, where E is in 2; and N is a subset of a set M in
2; with v(t, M) 0. Then 2;* is a -field and if the domain of t is extended
to 2;* by defining t(E U N) t(E), the extended function is countably
additive on 2;* and the measure space (I, 2*, t) is called the Lebesgue
extension of the measure space (I, 2, ). The function with domain 2;* is
the Lebesgue-Stieltjes measure on I determined by the function f and the

integral g(t)(d) is written () df(). A distribution F() on an

interval I is o be identified with the Stielties measure dg,() if for every
closed finite interval J contained in I, () is of bounded variation on and

F() f (t) d(t)

for all Cc(J). A distribution F() on an interval I is to be identified
with a point function f(t) if for every closed finite interval J contained in
I, f(t) is summable on J and

F(,#) ff(t)(t) dt

for all Cc(J).
Let (S, E, ) be a measure space, f a complex valued t-integrable func-

tion, and

(2.7) k(E) ff(s)(ds), E .
Then by [4, Corollary 6, p. 180], a function g on S to the Banach space B
is k-integrable if and only if f.g is t-integrable, and in this case we have

(2.8) f g(s),(ds) ff(s)g(s)zz(ds), E

The fact that vector and matrix notation will be used throughout the
remainder of this paper requires that some of the previous notions be ex-
tended to vector valued functions. The space BV(I)* is defined for an
interval I and consists of all vector functions with values in R whose
individual components belong to BV(I). The norm off is

(2.9) f II* Y E {v(f S) -4- f(a+) I},
i=1 i=l

where a is the left endpoint of I. With this norm the space BV(I)* is a
Banch space. Similarly, the space NBV(I)* of all vector functions f with
vMues in R and whose individual components belong to NBV(I) is a
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Banach space with norm given by

(2.10) I[fll* Ilfi]l (f,I).
i=1

Let S be a domain (i.e., an open connected set) in the (t, x) space Rn+l

and let f(t, x) be a real n-vector function defined on S. Let u(t) be a real
m-vector function of bounded variation, continuous from the right on an
interval 11, and let G(t) be a continuous n X m matrix defined on 11.
Let (t0, x0) be a point in S with to also in 11 and let a differential equation

Dx f(t, x) q-G(t) Du, x(to) xo,

involving f, G, u and x be given where the operations of differentiation are
to be understood in the sense of distribution derivatives with respect to
the real variable t. We shall call () a measure differential equation of the
first order because the distribution derivative Du of a function of bounded
variation may always be identified with a measure. Then the central prob-
lem of this section consists of finding an interval I contained in 11 (such
that to belongs to I) and a real bounded variation n-vector x(t) defined on
the interval I such that (t, x(t) belongs to S for all in I, the initial point
x0 is equal to x(to), and the distribution derivative of x(t) on I is f(t, x)
q- G(t) Du. For convenience we summarize the foregoing as a definition.
DEFINITION 1. A solution x(t) of () is a real bounded variation n-

vector x(t) together with an interval I containing the given initial time to
such that x(t) is continuous from the right on I and

(i) (t, x(t)) S for t I;

(ii) x(to) Xo

(iii) the distribution derivative of x(t) on I is f(t, x) -- G(t)Du.
Now consider the integral equation

() x(t) Xo -t- f(s, x(s) ds -- G(s) du(s).
to

DEFiNiTiON 2. A solution x(t) of () is a real bounded variation n-vector
x(t) together with an interval I such that

(i) (t, x(t)) S for t I;

(ii) x (t) satisfies the integral equation.

Note. A solution x(t) of () is necessarily continuous from the right.
If x(t) is any continuous function satisfying the integral equation, then
x(t) is of bounded variation and is a solution of (). By examining the last
integral in () it is apparent that x(t) only has discontinuities where
u(t) does.
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THEOREM 1. A solution x(t) of () is a solution x(t) of (9) and conversely.
Proof. Let x (t) be a solution of () and let F() be the distribution on

I to be identified with the ith component x(t); we then have for any closed
interval J contained in I that

(2.11) F() Xo -F (s, x(s)) ds + [G(s) du(s)] (t) dt

for ll in C(J). The derivative-distribution is then

DF’() -F(’)
(2.12) [ t t ]Xo + f (s, x(s)) ds + [G(s) du(s)] ’(t) dt.

Integrate by parts and obtain

DFi() (t) dxo -- (t)fi(t, x(t) dt
(2.13)

+ (t) d () du(s)
3"=1

where g(s) is the i,jth element of G(s) and u(s) is the jth component
of u(s).

Consider typical term from the lst integral and apply (2.8) to obtain

(2.14) (t) d g(s) du(s) (t)gi(t) dub(t).

Hence

DF’() f q(t)f(t, x(t) dt - f (t)[G(t) du(t)]’.(2.15)

Since G(t) is continuous, the last continuous linear functional in (2.15) is,
ccording to (2.2), identified with the mesure [G(t)du(t)] while the
first continuous linear functional there is identified with the function
f(t, x(t) ). This holds for ech i 1, 2, n nd therefore the derivative-
distribution DF() is identified with f(t, x(t)) G(t) Du nd x(t) is
lso solution of ().

Conversely, suppose x(t) is solution of (). Then we hve

(t)Dx’(t) (t)f’(t, x(t)) dt + (t)[G(t) du(t)]’.(2.16)

By using (2.8) gin we my write

)(2.17) (t)[G(t) du(t)] (t) d [G(s) du(s)]
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and then integrate the right hand side by parts to obtain

(2.18) (t)[G(t) du(t)] ’(t) [G(s) du(s)] dt.

Next, integrate the first two integrals in (2.16) by parts to obtain

f ’(t)[x(t) x0] dt
(2.19)

’(t) f(s, x(s)) ds + [G(s) du(s)] dt.

From (2.19) we huve ulmost everywhere in J that

Bu, since z() is eonUnuous from ghe right, being a soluUon of (),
and since ghe righ hand side of (2.20) is a funeUon of hag is eonUnuous
from he righg, ghen equality holds everywhere in for (2.20) and hus
() is a soluUon of (). This eompleges ghe proof.

Remark. If () is absolugely eonUnuous, hen all of he preceding defini-
Uons reduce o he eonvenUonal heory for absolugely eonUnuous soluUons
z() of systems of ordinary differenUal equaUons, since he disribuUon
derivaUve is hen ghe usual derivaUve.
We also noe ghag ghere is no disgribuUon solugion z() more general

ghan a funeUon of bounded variation. This follows since f(t, z) + G() D
is a measureand, in faeg, ig can only be defined for nonlinear f if z()
is a funeUon.

Before proceeding go ghe local existence heorem, we make he following
normalization. Le () z() z0 Umn

(.) () f(, () + z,) + a() (),

and g(0) 0. Henee a soluUon of () wigh iniUal poing z(0) zo is given
by g() + z0, where () is a solugion of (2.21). Nexg make a change of
variable r + 0 in (2.21) o obtain

y(t) f(r + to, y(r + to) + Xo) dr
(.)

+ G(r + to)du(r + to).

Finally substitute r + t0, obtaining

G(r + to)du(r z7 to),
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and change the notation so that

(r) y(r+ to),

](r, (r) f(r - to, y(r + to) + xo),

(r) G(r + to),

(r) u(r- to).

Then (2.23) becomes

(2.24) (r) f(r, (r) dr - O(r) d(r),

which is of the same form as () but with the difference that the initial
point is zero at time 0, i.e., (0) 0. Thus a solution of () with
x (to) x0 is just x (t) (t t0) + x0, where (t) is a solution of (2.24)
with (0) 0. It is apparent that we may consider from now on the
equation

(2.25) Dx f(t, x) + G(t) Du, x(O) O,

or equivalently, the equation

x(,) J0 + J0
THEOREM 2. (LOCAL EXISTENCE AND UNIQUENESS). Consider the measure

differential equation

() Dx f(t,x) + G(t) Du, x(O) O,

where x is an n-vector, G(t) is a continuous n ) m matrix on [-a, a] for
a > O, and u(t) is a bounded variation m-vector which is continuous from

fthe right on [-a, a]. Let , G(s) du(s) < b, where the variation referred
to in the norm is taken over [-a, a], and let f(t, x) be defined on

R," -a<=t<=a, Ixl <=b.

The following assumptions, hereafter referred to as Assumptions A, will be
made with regard to f t, x ).
A1. f(t, x) is measurable in for each fixed x with x <-- b;
A2. f(t, x) satisfies a Lipschitz condition in R, with respect to x for a con-

stant K;
A3. There exists a summable function r(t) on [--a, a] such that If(t, x)

<- r(t) for (t, x) in Ro.
Conclusion" Then there exists a constant a’ such that 0 a’ a and for
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which we have

(i) r(t) dt < b G(s) du(s)-(ii) 4Ka’ < 1,

and there exists a unique solution x(t) of () on [-a’, a’] with x(O) O.
Proof. Let W be the subspace of the Banach space BV(I)* (where

I [-a, a’]) for which x W implies that x [[* =< b. We shall show that
the mapping T defined by

(2.27) Ty(t) fo f(s, y(s) ds - fo G(s) du(s)

is a contraction mapping of W into W and thus by the principle of contrac-
tion mappings there is a unique fixed point.

First we must show that T maps W into W. Now it is evident that
/,

_1o f(s, y(s))ds and .1. G(s)du(s)are functions of bounded variation on

[-a’, a’] and thus Ty is a function of BV(I)*. To show Ty ]1" .<-- b we
proceed as follows:

(2.28) Ty [l* f(s, y(s) ds + G(s) du(s)

but

(2.29) -<_2
i=1

<= 2 2 f(s, y(s) ds 2
i=1

tfi(s, y(s) ds, [-a’, a’] + (s, y(s) ds

If(s, Y(S) ds

at

<= 2 r(s) ds.

Since f.1. G(s) du(s) < b, let 0 =- b G(s) du(s) Then (i)

follows immediately, because of the summability of r(t), where a’ is chosen
so small that (ii) is also satisfied. It then follows from (2.29) that

(.ao) f(, ()) < o,
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und furthermore by (2.28) nd (2.30) it follows that

(2.31) TY l]* < + b 0 b.

Thus T maps W into itself.
Finally, we must show that T is a contraction. To this end, consider
Ty Tz ]]* in the same fashion as (2.29) to obtain

(2.32) 5 2 J_ If(s, y(s) f(s, z(s) ) ds

But i is easily shown

for all such that -a’ <- -< a. Thus

(2.34) Ty Tz

but 4Ka’ < 1, and T is therefore a contraction as was asserted.
Remark. By reversing the steps in the normalization procedure it is ob-

served that the local existence and uniqueness theorem holds for arbitrary
initial points (t0, x0) which re centered in an appropriate rectangle wherein
Assumptions A are known to hold.

It is possible to establish the local existence and uniqueness theorem
under less restrictive hypotheses on the size of the rectangle domain if one
only desires a solution for times greter than the initial time to.
THEOREM 3. Consider the measure differential equation

() Dx f(t,x) - G(t) Du, x(O) O,

where x is an n-vector, G(t) is a continuous n X m matrix on [0, a] for a > 0
and u( t) is a bounded variation m-vector which is continuous from the right on
[0, a]. Let f( t, x) be defined on a rectangle

R," 0 <= <= a, Ix <= b.

The following assumptions will be made with regard to f( t, x).
B1. f(t, x) is measurable in for each fixed x with x b;
B2. f( t, x) satisfies a Lipschitz condition in R, with respect to x for a con-

stant K"
B3. There exists a summable function r(t) on [0, a] such that If(t, x) -<_. r(t)

for (t, x) in R,.
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Conclusion" Then there exists a constant a’ such that 0 a’ a and for
which we have

b
(i) r(t) dt < ,
(ii) Ka’ < 1,

(norm is taken on [0, a’b
(iii) G(s) du(s) <

and there exists a unique solution x(t) of () on [0, a’] with x(O) O.
aProof. The existence of an such that (i) and (ii) are true is obvious.

The fact that (iii) is true follows from the right continuity of u(t) on
P

[0, a] which makes the indefinite variation of the function J, G(s)du(s)

right continuous also.
Let W be the subspace of the complete metric space NBV([O, a’])* for

which x W implies x I]* G b. It can be shown, just as in the proof of
Theorem 2, that the mapping T defined by

T (t) + .o

is contraction mapping of W into W and thus by the principle of con-
traction mappings there is a unique fixed point in W. This function, call it
x(t), does indeed originate at x(0) 0 because of the normalization re-
quirement on functions in W.
Remark. A solution x(t) of a measure differential equation () in a

rectangle R, can be found for times greater than the initial time to no
matter how small the number b regulating the distance of points x from the
initial point x0. Contrast this with the situation in Theorem 2 in which the
desire for a solution in an interval containing the initial time in its interior
placed a requirement on the size of b in terms of the variation of

G(s) du(s) on. [to a, to + a’].

3. Global extension of solutions. The fact that a solution x(t) of (t) may
have discontinuities presents some difficulty whenever we try to consider
a solution near the boundary of a domain S wherein f(t, x) is defined be-
cause the solution may take a jump at some particular time which would
carry it out of S. To prevent such an anomaly from complicating the analy-
sis, it is desirable to consider systems of equations in domains which will
not exhibit such abnormal behavior. Following the idea in the theory of
ordinary differential equations of defining a Carathdodory system, we make
the following definition.
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DEFINITION 3. Consider the measure differential equation

(Jl) Dx f(t, x) -+- G(t) Du,

where x is n. n-vector, G(t) is continuous n X m mtrix on an in.tervl I,
and u(t) is a bounded variation m-vector continuous from the right on this
same interval. Let f(t, x) be defined in a neighborhood of a domain S of
R"+ such that for each point (to, x0) in S there exist a rectangle R, cen-
tered at (to, x0), a constant K > 0, and a function r(t) summable on the
interval [to a, to -- a], a subinterval of I, such that

(1) f(t, x) is measurable in for each fixed x such that (t, x) R,
(2) f(t, x) satisfies a Lipschitz condition with constant K with respect

toxforall(t,x) R,:

(3) If(t, x) <- r(t) in Ro

(4) a() d() < b (norm aken on [- a, o-I- a]).

A system (N;) satisfying these conditions will be called a Carahdodor
Measure Nem in and will be denoted for brevigy by the symbols (?MS.

Remarlc. The rectangles R centered at poings of S need nog ghemselves

be eongained in S. The definition of CMS requires hat f(, x) be defined
in a neighborhood of S which eongains all ghe rectangles eengered in S.
More insighg go ghe nature of this remark is given in the example below.

Remarlc. A CMS has a unique solution x() on an interval [0 a, 0 -t- a]
(for appropriately chosen a) such hat z(0) :Co for every poin (to, :Co)
belonging go S.

Ezample. Consider the measure differential equagion

(1)) Dx f(t, x) + G(t) Du

in domain S in R+1. Let G(t) be continuous matrix on an interval I
nd let u(t) be of bounded ariution and continuous from the right o I.
Let

=/(t, x) (t, x)

and let I* be the subset of I consisting of those for which there exists an
x such that (t, x) is in S*. Thus I* is open and we may assume that it is an
interval for, in the contrary case, we can restrict our attention to one of its
interval components. Thus S* is a domain in Rn+l. Now for any to in I*,
define

(3.2) J(t) G(s) du(s) G(s) du(s)
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for all in I*. Notice that J (t) does not depend on to in fact we have

(3.3) J(t) G(t)[u(t) u(t )1.

For each h in I* define

(3.4)

and define

Finally let

{(t:, x)I (t:, ) sT,, d(x, oS*l) >

S**= U S,**
LI*

It is easy to conceive of situations in which S** is not connected (i.e.,
J(h) being so large that St*l* is empty) but S** is open in Rn+l. To see

the latter, observe that S** is merely S* with certain constricting cuts taken
at times corresponding to discontinuities of u(t). Since u(t) is of bounded
variation it can have at most a denumerable number of discontinuities and
furthermore the depths of the cuts in S* cannot all be the same depth--a
situation which would cause trouble in proving that S** is open. Thus
given any point P (h, Xl) in S** it is easy to find an open set in S**
containing it, because any cuts in the vicinity of the point are of necessity
isolated, that is, infinitely many cuts do not exist whose depths are greater
than the distance of P from the boundary of S* (measured in the hyper-
plane tl).

Finally, if f(t, x) is continuous in S and Of(t, x)/Ox exists and is con-
tinuous in S, then (OZ) is a CMS in S**; for given (to, x0) in S**, take
R, centered at (to, Xo) such that b J(to) -t- e/2, and choose a so small
that

a() (u() <-_ J(to) + ,
where is less than the distance from (t0, x0) to the boundary of S** meas-
ured on the hyperplane to. If to is not a limit point of discontinuities of
u(t), it is obvious that such a choice of a can be made. If to is a limit point
of discontinuities, then letting t be the sequence of times art which the
discontinuities occur, it is clear that the depth of the cut at tc must decrease

to zero as/c approaches infinity and hence the variation of G(s) du(s)

on [to a, to -t- a] must decrease to the value of the jump at to. Thus a
choice of a can be made in this ease also. Then take

r(t) max If(t, x) eonst.,
(t,x) Rab
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and for the Lipschitz constant K use

Then

K n max
t,x) E Rab

f(t, y) f’(t, z)

and summing on i we obtain

f(t, y) f(t, z) K y z l.
Hence the verification that (:) is a CMS is completed.
THEOREM 4. Consider the CMS

() Dx f(t, x) - G(t) Du

in a domain S. Then there exists a unique solution (t, to, Xo) of () such
that (to to, xo) Xo for every point (to, Xo) S, where (t, to, xo) is defined
on a maximal open interval (-_, -+). Every solution of () through the
initial point (to, Xo) is merely a restriction of (t, to, Xo) to some subinterval
containing to.

DEFINITION 4. Call (t, to, Xo) on (-_, +) the maximal solution through
(t0, x0).
Proof of Theorem 4. Without loss of generality take to 0, x0 0. Let

2; be the set of all solutions of () through (0, 0). The set 2; is not empty
since the local existence and uniqueness theorem provides at least one such
solution. Let (t) and (t) be any two solutions in 2. Then. they must
coincide on their common interval of definition. To see this, let the interval
common to the two intervals of definition be denoted by (tl, t2). If they
do not coincide on this interval, then let r, where tl r t. be such a time
for which () (r). There are two cases which must be considered: (i)
v 0and (ii) r 0.

Case (i), r 0: Since the solutions are continuous from the right, there
is a first time t’ < 0 such that t’ :> r and (t’) (t’). If this were not so,
then the set of points to the right of r for which the solutions were equal
would have a limit point t* 0 such that for points sufficiently near t* but
greater than t* the two solutions would be equal. But continuity from the
right implies that the two solutions are equal at t* also, contradicting the
existence of t*. Now apply the local eistence nd uniqueness theorem for
the initial point (t’, (t’)) to deduce that and coincide on some interval
about t’, thus contradicting the definition of t’. Hence the solutions cannot
differ on the part of their common interval of definition which lies to the
left of the initial time 0.



NONLINEAR VECTOR DIFFERENTIAL EQUATIONS 245

Case (ii), > O: Let t’ be the least upper bound of all times for which, and are equal to the left of as well as at itself. It is clear that t’ > O.
On one hand we have that 9(t’) # (t’) because if they were equal at t’,
an application of the local existence and uniqueness theorem would yield the
result that the two solutions were equal on an interval about t’, thus con.-
tradicting its definition. On the other hand, if t’ is assumed to be less than r,
then a glance at the two formulas

shows thag (’) (’) in eongradieion o ghe previous resulg. Thus ’ is
in fae ghe righ hand endpoin of ghe ingerval common go bogh of ghe

intervals of definition of and and hey do indeed coincide on heir com-
mon. ingerval of definigion.

Now consider he seg I formed by taking ghe union of all intervals of
definition of solutions it N. The se I is clearly an ingerval and we define
(, 0, z0) on I by akig for igs value he value of any solution of ghe

class 2 which is iself defined a . By he previous caleulagions i is to be
noieed ghag i will hog make any difference which of he solugions (defined
ag of course) is gaken from 2 because hey all coincide on heir eommo.
intervals of definition. Thus, by construction, every solution
resriegion of (, 0, z0) go some subinterval of I containing 10.

If we consider ghe funegion () o be a solugion on ghe ingerval a < < b
(where (a, b) may be any subinterval of
igself) we may wonder whether or nog ghe solution () has
approaches b from he lefg or from he righg. The following theorem estab-
lishes ghag hese limits exisg for a CMS.
THEOREM 5. Consider the CMS

Dx f(t, x) + G(t) Du

in a domain S of R’+I. Given a solution (t) of () on an interval (a, b),
suppose that (t) is contained in a subset C of S such that If(t, x) <-- r(t),
where r(t) is integrable on (a, b) for all (t, x) in C. Then both limits

(a+) lima(t), (b-) lima(t)
t->a+

exist. If furthermore C is compact then the maximal extension of 9(t) in S
must reach S C both as increases and as decreases.
Proof. From the representation

(3.6) (t) xo + f(s, (s)) ds + G(s) du(s)
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fora < < b, wehavefora < tl < t2 < bthat

I(tl) (t)l _-< f(s,,(s) ds + My(u, [tl, t])
tl

(.7)
_<-.. r(t) dt -+- My(u, [tl t]),

where G(s) <= M for a =< s .<- b. Then since u(t) is of bounded variation
on [a, b] and continuous from the right, we can maintain the sense of the in-
equality in (3.7) by adding the nonnegative term 3Iv(u, [a, t]) to obtain

(3.8) I,(t) -,(t)l <= r(t) dt + My(u, [a, t]).

Now choose t so close to a (but a < t2) that

(u, [a, t]) < 2M’

and then choose tl so close to t that
t2

r(t) dt <-.
Then from (3.8) we obtain

for all a < t < t such that tz is sufficiently close to a and by Cauchy’s
criterion, limt_,o+ (t) exists. In fct, since (t) is continuous from the
right, then (a+) (a).

For the other limit we define

p(t) f(s, (s) ds,
(3.10)

V(t) G(s) du(s).

From (3.6) it is clear that

(3.11) (b- (b- q- V(b- ).

But for a < t < t < bwehave

ft(3.12) g’(tl) (t) <-_ r(t) dr,

so that as t and t approach b from the left with t < t, (b- exists by
Cauchy’s criterion. The function V(t) on the other hand is of bounded
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variation on the interval [to, b] atd hence V(b- exists. Thus from (3.11)
o(b- lim.t_,_ o(t) exists.

Finally, we consider what results if C is compact but the maximal ex-
tension of (t) in. S does not reach S C. Treating the extension to the
left first, we note that e(r-+ (r_) exists and belongs to S. By the
local existence and uniqueness theorem we can find a solution (t) through
the point (r_, (r_) on an interval [r_ a, r_ + a] which coincides with
(t) on [r_, r_ + a] and hence provides an extension of to the left of r_,
contradicting the definition of that point. Thus (t) must have reached
S C as approached r_. Iu fact, it is easy to see that the limit point
(r_, e(r_) cannot belong to S or else an application of the local existence
and uniqueness theorem would provide a contradiction of the definitiot
of r_. Thus a mximal solution of () in S can be continued up to the
boundary of S as decreases.

Lastly, we treat the case when approaches r+ from the left. We have that
( r+ exists and is in C and hence by the definition of a CMS, there is a
rectangle R about (r+ (r+ -)) such that

a(s) du(s) < ,
+

where the norm is taken over [r+ a, r+ + a] But then clearly

(3.13) J(r+) < G(s) du(s) < ,
+

in other words, (+ -) + J(r+) belongs to ,. Now () stisfies thc
conditions of Theorem 3 for some rectangle R,,, contained in R, and cen-
tered at (+, (r+ + J(r+)), nd hence solution h(t) of () exists
on Iv+, r+ + 5] for sufficiently small 5. We can represent this solution by

(a.14) x(t) (+-) + J(+) + f(,s, x()) + a() d().
+ +

This serves o exgend () o ghe righg of r+ because we may rewrite (.14)
gS

(a.) + f(, x()) + a() ()
+ +

zo + f(, ()) + f(, x())
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Consider the function o(t) defined by

(3..) (t) .(’(t) if
_

<t < +,
[h(t) if + < ++ .

Then i’or + we hve from (3.15) that

(t) xo + f(, ()) d + a() u(),
to

and for < r+ we have from (3.6) that

() Zo + f(, () + () ().

Hence for r_ < < + + we have

which is a solution of () on an interval which eongains ghe maximal ex-
tension interval, hus eonradieging ghe definition of r+. Again he con-
clusion is ghag () musg have reached S as approached r+ from ghe
lefg and ghag, in fae, ghe limig poing (, +, (r+-)) eannog belong o S
or else ghe preceding argumeng can be repeaed.
THO 6. Coider he MS

in a domain S of R+. Aume for each compac e q[ S here
bound Bc uch ha f , z N Bc for , in . Le be
oluioe of () on r_ < < + Then () mu lie entirely in S , for
ever comp e in S, boh a pproache r_ and a approache +

Proof. If r+ + or if
_

-, he assergion is obvious. Consider
ghen ghe ease when r+ < + . If () is never in ghe assergion is grue,
bug if () lies in for some gime < + ghen he solugion musg meeg S C
by Theorem . The solution could no remain in C until he gime r+ because
hen he limi poing (r+, (r+-)) would belong o and hence by he
definigion of a CMS, here is a rectangle R, eengered ag (r+, (r+-))
such ghag (r+-) + J(r+) belongs o R. Bug by using he meghod

he las parg of he proof of Theorem g, we can exgend () o he righg of
r+, eonradieging he definigion of r+. Thus ghe solugion () mus leave
C ag a gime prior o r+. If ig hen remains in S we are done, bug if
reurns o i mus mee S again a a ime prior o r+. We hus have
only o show ha () eanno mee infinitely many imes as
proaehes r+.

Suppose () mees infinigely many gimes as approaches r+. There
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are two cases which can occur: (i) (t) also leaves, infinitely often, a second
compact set C1 contained in S such that the interior of C1 contains C or
(ii) no compact set C1 in S can be found such that the solution (t) also
leaves C1 before returning to C. Consider ease (ii) first. This means that a
compact set C1 can be found which ultimately contains (t) from some time
on. But this is a contradiction since must meet S C at some time prior
to r+. Hence only ease (i) is left to be considered. This implies that the
solution (t) crosses infinitely often the space common to the exterior of C,
denoted by E(C), and the interior of C1, denoted by I(C). Denoting the
closure of a set by placing a bar over the symbol for the set, we observe that
there exists an > 0 such that for any two times h and t for which (tl) C
and (t) E(C) we have

(3.18)

We shall show that this leads to a contradiction.
Let to be a time at which belongs to C C and choose a sequence of

times to < tl < t < < t < t+ < < r+ such that belongs to C
for odd numbered times and to E(C1) for even numbered times. Starting
at each odd numbered time t,_l we extend the solution to the right and
observe that at some time t .<_- t the solution first belongs to E(C1). Now

tleach of the points (t, ()) lies on a hyperplane t so that the dis-
tance of (t) from OC is less than J(t) I, i.e., if we define

(3.19) He [(t, x)
then each of the points (t’, (t)) lies in the set H; and the set

(3.20) Ct’ C1 [.1 H
k=l

contains all of the points (t_l) and (t). It is easy to show C is compact
by noting it is bounded and by showing its complement is open in the
same manner that set S** was shown to be open in the example following
the definition of a CMS.

For convenience, let us drop the primes from the even numbered times
obttined above and summarize the results:

(a.z)
(t,_) c, (t,)

Now compute by virtue of (3.18)

< I(t-,) (t)
",,,-

(s, ,(s)) ds + G(s) du(s)
(a.22)

t2k_l t2k._l
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But If(s, o(s))l is bounded by some constant Be1, because the solution
(t) is contained in the compact set C1 during the interval [t_, t].
Thus we have from (3.22),

<= Bcl,(t t_) -q- Gv(u, [t_, t]),
(3.23)

where G nx la()I.
r_<s<__r+

By summing (3.23) for/ 1, 2, 3, we obtain

(3.24) m _-< Bc,,(r+ t) q- Gv(u, [t, r+]),

which is a contradiction since the right hand side is finite.
A similar method proves the assertion for the case when approaches r_.

That case is, in act, simpler because (t) is continuous from the right.
COnOLLAtY 1. Consider the CMS

(fi) Dx f(t, x) q- G(t) Du

with f(t, x) continuous in Rn+l, G(t) continuous on R1, and u(t) of bounded
variation and continuous from the right on R1. If a solution (t) of (9g) is
bounded in R for > to, then r+ q-, i.e., the solution can be extended
for all times in the future.

COROLLARY 2. Consider lhe CMS

(fi) Dx f(x) q- G(t) Du,

where f(x) is of class C in an open set $1 in 1n, G( t) i8 continuous on R,
and u(t) is of bounded variation and continuous from the right on R. Let o(t)
on r_ < < r+ be a maximal solution in S R X St. If o(t) lies in a
compact subset C of S then r_ and r+ q- . If r+ < q- , then for
each compact subset C of S the curve ( t) lies in S C as r+. The same
result is true if r- > -.
TEOnEM 7. Consider the CMS

(fig) Da, f(t, x) q- G(t) Du

in S I X R", where I is an open interval of R1. Then each maximal solution
(t, to, xo) for to in I is defined on the whole interval I in case, for some con-
stant K > O,
(1) If(t, x) < K in S, or
(2) If(t, xl) f(t, x,) <= K x x in S.

Proof. Suppose that is defined only on a proper subinterval (r_, r+)
of I. Then take the compact set C of R"+1 defined by

c [_., +] x
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where S(p) is a closed sphere of radius p centered at the origin of Rn. By
Theorem 6, (t) lies entirely outside of S(o) as approaches r+. Thus for
times t’ < r+ but arbitrarily close to r+ we have (t’) unbounded be-
cause we can take o as large as we please. On the other hand we have

I(t’) (to) + f(t, (t) dt + a(u, [to, +])
(3.5)

[(to) + K(t’- to) + Gv(u, [to, r+])

Hence by choosing p sufficiently large we obtain contradiction nd thus
(t) is defined on the whole open interval I.

4. Dependence of solutions on initial conditions. A solution of a measure
differential equation can be considered from several points of view. For
example, if we write (t, t0, x0) for the solution through the point (t0,
then we can consider as a function of t0 and x0 as well as a function of t.
Another way to consider solutions is with regard to changes in the co-
efficien in the equation.

Let us treat the latter named problem first. We suppose that we have
two equations with coecients that differ little from each other over
interval I and we estimate the size of the difference in the two solutions.
THEOaEM 8. Consider the two CMS’s,

() Dx f(t, x) + G(t) Du,

(’) Dy h(t, y) + F(t) Du,

in a domain S of R+. The coecients are related as follows"
(i) f(t, x) h(t, x) e for all (t, x) in S, and
(ii) G(t) F(t) on an interval (a, b).
Assume further that f satisfies a Lipschitz condition in S with constant K,
that f(t, x) M for all points in S, and that G(t) G on [a, b]. Let
x(t) and (t) be solutions in S. Then for any times r, , in (a, b) we have

+ nv(u, [, t]) + Gv(u, [, ])}e-.
Proof. The solutions x(t) and y(t) are represented by

z(t) x() + f(s, x(s)) ds + (s) du(s),
(4._)

y(t) y() + h(s, y(s) s + F(s) du(s).

Thus
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Ix(t) y(t) <= Ix(r) y(o-) + i h(s, y(s))

(4.2) -}-

h(s, y(s)) f(s, y(s)) -+- f(s, y(s))

f(, x()) d

Concerning the last term on the right in (4.2) we have

(4.3)
h(s,y(s)) --f(s,y(s)) +f(s,y(s)) --f(s,x(s)) dsl

K ly(s) -x(s)) ds].

Hence by applying the well-known inequality of Bellman and Gronwall to
(4.2) after strengthening the in.equality through use of (4.3), we have the
stated result.

Notice in particular that if the two solutions take on nearby initial data
at the same instant of time, i.e., Y(r) x(r) < 5, then the result of the
theorem reduces to

(4.4) Ix(t) y(t) <- {5 -k- Vv(u, [-, t]) -+- It r I}eKIt-,’,
and thus the two solutions are near to each other in a sense which is very
transparent.
We proceed now to the investigation of the behavior of a solution as a

function of the initial conditions. According to the definition of a solution,
it does not necessarily depend continuously on the time but is instead a
function of bounded wriation in t. The following simple example shows that
a solution need not depend continuously on the initial time to either.
Example. Consider the equation

(4.5) Dx x + Du,

where x and u are real and

(4.6) u(t.) f,,’ t_>_. O,
t<O,kv,

so Du is the "Dirac 5-fmmtion," or more properly, the Dirac measure. Let
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tl < 0 < t2 and find solutions through (tl, 1) and (t, 1) respectively.
We shall prove in the next section that for equations with f linear in x we
can find a fundamental solution to the homogeneous equation and use a
modified form of the variation of parameters formula so widely used in the
conventional theory. Proceeding from this fact we obtain

(4.7) (t, t, 1) et-t1 + e e du(s),

(4.8) (t, t2,1) et-t: -- e e du(s).
t2

:Now

te-"du(s) 0 if < 0,
’1

hence

(4.9) (t, t, l) (l, t, 1) e e-tl e-t: e-" du(s)
t2

By using integration by parts on e--’ du(s) we obtain

e du(s) u(s)e-" ds + e

(4.10)

fo
t’

e d8 + e-t’ 1.

Hence, combining (4.9) and (4.10) we have

(4.11) (t, t, 1) (t, t, 1) et[e-t e-t -- 1].

In particular, for values of t, t, and t very near zero but such that 0
and t 0 t, we have that I(t, t., 1) (t, t, 1) is approximately
equal to one.

If is a solution of a CMS () on some interval I, then it follows from
the local existence and uniqueness theorem that (7:) has a unique solution
through any point (-, ) close enough to the given solution. That theorem,
however, assures the existence of the solution through (r, ) only over
some short interval containing r. Actually it can be shown that the solution
through a close neighboring point exists over each compact subinterval of I
and hence that (t, to, x0) is defined on an open set in Rn+. Furthermore,

is continuous with respect to x0 and of bounded variation with respect to to
(as well as with respect to t) in this open domain. The precise conditions
under which this is true form the next theorem.
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THEOREM 9. Consider a CMS

() Dx ---f(t, z) - G(t) Du

in a domain S of Rn+l. Let b(t) be a solution of (91;) on an interval 1"
a <= <- b. Then there exists > 0 such that for any point (r, ) in the domain
C defined by

C" a<=t<=b,[x-(t) l<,
there exists a unique solution of () on I with o(, -, ) . Hence the
subset ) R+, defined by (to, Xo) S and

_
< < + (for (t, to, Xo) ),

is open. In , (t, to, xo) is continuous with respect to Xo and is of bounded
variation in and to.

Proof. Let > 0 be chosen so that the (t, x) region U given by

U: a b,x- (t)[ 5

belongs to S. Let r be an rbitrary time in a r b and choose t such
that t b. We wish to show that a solution starting near (r) can be
extended so that it exists on the interval [, tl]. TheI since t is arbitrary,
we cn extend the solution to the hail-open interval [, b).

Consider covering of the compact set U by the open rectangles centered
t each point of U (their existence is given by the definition of CMS).
We can select finite subcovering of these rectangles and we define K to be
the maximum of the finitely many Lipschitz constants ssociated with
these rectangles. Choose 5e-.-a and with this define C by

C"

Now if (r, ) is in C, there is a solution (t, r, ) of () through (, )
on some interval [r a, r + a] and can be represented s

(4.12) (t, , ) + f(s, (s, , ) ds + G(s) du(s)

fort- a + a. Also for any in a, b wehave

(4.13) (t) (r) + f(s, (s) ds + G(s) du(s).

Hence if we look at the difference between and on [r a, r + a] we find

(4.14) i(t) (t, ,, ) 5 I(,) e- < 1

and thus cannot leave the compact set U. By Theorem 6 then, can be
extended over the whole interval It, b). A similar procedure serves to ex-
tend to the left to a, and thus (t, r, () is defined on an open set V in
Rn+ given by



NONLINEAR VECTOR DIFFERENTIAL EQUATIONS 255

V: a<t <b, a < r <b,

Next we must show that (t, r, ) is a continuous function of on V.
Let (r, ) and (r, x0) belong to C. Then we know there exist solutions
(t, r, ) and (t, r, x0) defined on V such that

(4.15) (t, , ) (t, , Xo) xo et-

for all (t, ) such that a < < b, a < < b. Now, given e > 0, choose
Xo ee--a and then from (4.15),

(4.16) I(t, , ) (t, , x0) <
uniformly with respect to and .

Finally, we show (t, , ) is of bounded variation with respect to r on
(a, b). Let H be a partition a0 al a of (a, b). Then for any a
we have

(4.17) (t, a,
ai

Hence from (4.17),

Now

f(s, (s, ai ) ds q- fa G(s)

(t, ai+l

f.t fa(4.18) =< f(s, (s, a+ ) ds f(s, (s, a ) ds
ai+l

+ G(s) du(s) G(s) du(s)
ai+l ai

f(, (, +
ai+l ai

(4.19)
ai+l

ai+

and if we define M sup If(t, x) [, then
ai+

(4.20) f(, (, a, )) & N M(a+ a).

Furthermore, defining a max, a() , we have

t it ai+G(s) gu(s) G(s) u(s) G(s) du(s)
(4.21) a+ ai

5 G,(u, [a, a+d).
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From (4.18) through (4.21) we obtain

(t, a+l, ) (t, ai, ) _-< M(a,,:+l
(4.) f-+- Gv(u, [a,, ai+l]) + K [(8, a+, ) (s, a, ) ds l,

i+l

and by using the Bellman-Gronwall inequality we can write

[(t, a+l, ) (t, a, ) M(a+ a)
(4.23)

+ Gv(u, [ai, ai+l])}egai+l-t.

Let A max {[ a I, [b ]}; then the inequality (4.23) can be main-
rained by replacing e+l-t by e. Finally, by summing (4.23) over i
there results

N

(4.24) [(t, a.+ ) (t, a ) {M(b a) + Gv(u, [a, b])}e,
i=l

and thus (t, , ) is of bounded variation on [a, b] with respect to .
THEOREM 10. Consider the CMS

(.) Dx =/(t, x) + (;(t) Du

in a domain S of Rn+ and suppose lhat f exists and is continuous in S. If
(t) (t, -, ) is a solulion, then 0/0 is continuous with respect to for
(t, -, )in {(t, , )I (r, ) S, r_ < < +}.

Proof. Consider the case of 0/0, where (r, ) is in S and and are
temporarily held fixed and (,..., n). Let h (h, 0,..., 0) and
let - -+- h for h so chosen that (, -) is in S. Define x by the equation

for (t, , ) in (a, b) X S . Then we must show that lim_,0 x(t, r, ., h)
exists. For convenience let

(4.26) O(t, , , h) (t, -, ) (t, , )

and observe that

(4.27) O(t, r, (, h) ( + If(s, ,(s, r, )) f(s, ,(s, r, ))] ds.

Let us shorten ghe nogation since (r, ) is being held fixed and combine
(4..25) wih (4:.27) to obtain

O(t, h) h ft If(s, (s, ’, ) f(s, ,;,(s, ,, ) )](4.98) X(t, h)
h h-k- J h

ds.
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Applying the mean value theorem to the integrand in (4.28) there results

(4.29) x(t, h)hftof(s,o)I’(s’")-’(s’’) 1- + hi
ds,

or

h rjt Of (s, (s, ) -- e(s, h))x(s, h) ds,(4.30) x(t, h) -- - r

where i’or each fixed s, e(s, h) approaches zero as h approaches zero. Define

(4.31) (s, 0) 0;

then (4.30) is equivalent to a linear differential equation with a parameter:

(4.32) dy A (t, h)y(t, h) y(r) h
dt h

in which the coefficient matrix is continuous at the parameter value h 0.
Such an equation has a unique continuous solution x(t, h) for which the
limit as h approaches zero exists uniformly for in (a, b), i.e.,

(4.33) lira x(t, h) x(t, O)
h-0

exists uniformly for i. (a, b).

5. Linear measure differential equations. If one considers an ordinary
linear differential equation

(9) dx A(t)x + f(t) x(r) ,
dt

for in some interval I where A (t) is an n X n summable matrix on real
interval I and f(t) is summable n-vector on I, then it is well-known
(cf. [3, p. 74] that a solution of (9) on I may be represented as

(5.1) (t) (I,(t) -- (t) -1(8)f(8) ds,

where 4,(t) is a fundamental solutio matrix for the homogeneous equation
corresponding to ((O) with (I)(r) E, the n X n identity matrix.
The next theorem shows that there is a corresponding variation of

prameters formula for linear measure differential equations.
THEOE 11. Consider the linear measure differential equation

(2) Dx A(t)x -- f(t) + G(t) Du, x(to) Xo,

where A is a summable n n matrix on an interal I, f is a summable
n-vector on I, G(t) is a continuous n X m matrix on I, and u(t) is a bounded
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variation m-vector continuous from the right on I. If (t) is a fundamental
solution matrix of the homogeneous ordinary differential equation 2 A (t)x
with (to) E, the n X n identity matrix, then the variation of parameters
formula

(5.2) x(t) P(t)Xo - ((t) -l(8)f(s) d8 -- ((t) 4p-I(s)G(s) du(8)

is a solution of 2 on I such that x( to) Xo.

Proof. The fact that a solution of (2) exists follows easily from Theorem 4
and Theorem 7. We must therefore show that (5.2) is a solution of the
integral equation

(5.3) x(t) Xo + [A(s)x(s) + f(s)] ds + G(s) du(s).

We proceed by substituting the right hand side of (5.2) into (5.3) and
showing that (5.3) reduces to an identity. Let the right hand side of (5.2)
be temporarily denoted by (t) and define

(5.4)

q- A (s)a(s)

ft ft3- A (s)a(s)

+ f() & +
For convenience, we break

(5.5)

where

cI)-l(o")f(o") do" ds

(R)-()G() du() &

a(s) du(s).

(t) up into a sum of five integrals as follows:

(t) Xo + 11 + 12 + I. + f(s) ds + G(s) du(s),
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11 A (s)(s)xo ds,

I A(s)((s) -’(a)f(a) da ds,

I A(s)(s) -(a)G(a) du(r) ds.

We investigate the integrals I, I, and Ia separately making use of integra-
tion by parts formulas and properties of
By definition of (I)(t) we have

(5.7) de (s)A(s)o(s) -and thus

(5.8) 11 A (s)O(S)Xo ds
to to ds

Define

(5.9)

then

xo ds a( )xo Xo

A(t) ft -(a)f(z) dr;

I A(s)a(s)A(s) ds A(s) ds dO(s)A(s).
ds

Using integration by parts on the last integral in (5.10) there results

(5.11) I I,(s) dA(s) + I,(t)A(t) ,I,(to)A(to).

But A(to) 0 and dA(s) -(s)f(s) ds; thus

I (s)a-(s)f(s) ds + (t) -(s)f(s) ds

(.12)
f(s) gs + (t) -(s)f(s) ds.

to

In a similar manner it follows that if we define

(5.13) a(t) -()G(z) du(),

we have
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ft dc’(8)I: A (s)(s)ft(s) ds (s) ds
ds

(.)
d()a() (s) da() + (t)a(t).

By (2.8) we cn write

(5.15) (s) da(8) (8)-1(8)G(8) du(8),

and thus from (5.14) and (5.15) there results

(5.16) Ia G(s) du(s) + (t) -(s)G(s) du(s).

By substituting now (5.16), (5.12), and (5.8) into (5.5) we obtain

$(t) (t)xo + (t) O-(s)f(s) ds
(5.17)

+ e() -()() (),

bug ghe righg hand side is precisely (t).

6. Existence of an ptimal control. In ghis section, ghe eongrol problem
for he optimal control of a nonlittear dynamical system is defined. We
assume gha he system under consideration is described by a canonical
system of measure differengial equagions for the sgage variables. These
measure differential equagions depend on eergain parameters called control
variables. The problem of eongrol is o seleeg ghe eongrol variables so ghag

he veegor solugion (called he response) of ghe measure differengial equa-
tions will satisfy given initial and germinal conditions and further so ghag

he control variables, ogegher wih he response veegor, minimize a given
functional.

Consider ghe measure differengial equation

(") (, z, ) + a() ,
where f(, z, ) ogeher wigh Of(, z, )/Oz, i, 1, 2, n, are real
eonginuous funegions in R N R N , where R is he real -dimensional
number space (I z z I), and a is a nonempy eompaeg subse
of R. We furgher suppose hag ghe elements () of ghe n N m magrix

G() are eonginuous funegions on R for i 1, n, j 1, m, and
ghag he funegions () are of bounded variagion and continuous from ghe

righg on appropriage gime ingervals such ghag ghe graph of () lies in .
For each choice of a function (t) on < 0 N N 1 < aS a vector
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valued function whose value is in ft and whose components ui(t), j 1,
2, ..., m, are of bounded variation and continuous from the right on
[to, tl], the measure differential equation

Dx f(t, x, u) + G(t) Du

has a unique bounded variation solution x(t) (called a response) on to
=< =< tl (or a subinterval) through a prescribed initial point (t0, x0). This is
the result of the existence and uniqueness theorems of the previous section
for a CMS. The representation of the response is, of course, the unique
bounded variation solution of the integral equation

f,t(9) x(t) Xo zc f(s, x(s), u(s) ds zc G(s) du(s).
to

DEFINITIO 5. A control for the equation (,t), where a nonempty
compact set ft contained in R and an initial point x0 in R have been pre-
scribed, is a vector valued function u(t) of bounded variation and con-
tinuous from the right on a finite interval to =< _-< t with its values in
ft such that its response x(t) with x(to) Xo is lso defined in R on to
<=tt.
The main considerations herein will be directed towards the problem in

which a control u(t) is sought whose response x(t) initiates at the given
point x0 at timet to and terminates at time t in some given moving
target T(t), i.e., x(t) T(tl). More precisely"
DEFINITION 6. For each on a given finite interval 0 =<- =< , we specify

a nonempty compact set T(t) contained in R nd called the target. This set
is to vary continuously with in the sense that the distance d between two
nonempty compact subsets is taken to be the Hausdorff metric (i.e.,
d d(X, Y) is the smallest real number such that X lies in the d-neighbor-
hood of Y and Y lies in the d-neighborhood of X, cf. [8]). If T(t) is a point
for each t, then the target is continuous curve.
The criterion, by which the control is to be selected is incorporated s

follows.
DEFINITION 7. For a given real valued continuous function f(t, x, u)

defined on R >( R >( we define the cost functional C(u) of a control u(t)
on to =< =< t with response x(t) by

tl
(6.) C(u) 5(t, x(t), u(t) gt.

If f0(t, x, u) 1, then C(u) t to, the time duration over which
the control is exerted. Such a cost functional is then called time optimal.
DFINITION 8. Given the dat"

() Dx f(t, x, u) + G(t) Du, the equation;
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(b) a nonempty compact set 2 c Rm, the restraint set (which contains the
graphs of the controls);
(c) x0 Rn, the initial point;
(d) T(t) c Rnonr0 =< t-< rl,thecompacttarget;
(e) the real number E > 0.
Define A A(f(t, x, u), G(t), , x0, T(t), E) as the set of all controls u(t)
contained in t with u(t) of bounded variation and continuous from the
right on various subintervals to =< =< tl (but r0 =< to < t =< r) such that
v(u, [to, 6]) =<_ E and such that the responses x(t) satisfy x(to) Xo and
x(t) T(tl). This set A is called the set of admissible controls.
DEFINITION 9. A control u*(t) in A is called optimal in case

(6.2) C(u*) <= C(u)

for every u(t) in A (C(u) is given by Definition 7).
The search for an optima] control associated with the data in Definitions

8 and 9 is simply termed hereafter as "the control problem for the given
data."

Remark. The hypothesis concerning the uniform bounded total variation
of the admissible controls is concerned with the fact that in a large class of
problems the total variation is a mathematical manifestation of the motion
of some process. It is those processes which contain devices capable of sus-
taining only a bounded amount of movement, regardless of the control
that is applied, to which the following theory pertains.
THEOREM 12. Given the control problem for the data"
(a) Dx f(t, x, u) + G(t) Du, with fi(t, x, u) and Off(t, x, u)/Ox,

i, k 1, n, continuous on R X R ( R and gi(t) continuous on an
interval ’o <= <= rl for i 1, n, j 1, m;

(b) a nonempty compact restraint set R’;
(c) the initial point Xo
(d) the continuously moving nonempty larger set T(t) R defined on

"r < ==.< T

e the cost functional

C(u) f(t, x(t), u(t) dr,

where f( t, x, u)is continuous on R
(f) the set A A(f(t, x, u), G(t), , Xo, T(t), E, h(t)) of admissible

controls defined on the fixed subinterval [o, ’], where h(t) is a nondecreas-
ing function, continuous from the right, such that all u(t) in satisfy the
inequalities

IAul <= Ah
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on every subinterval of the interval [to, to - ] for some appropriate > 0,
however small.
Assume that set A is such that
A A is nonempty,
(B) there exists a real bound B < such that for all responses x( t) cor-

responding to controls in A we have Ix(t) <- B.
Conclusion" Then there exists an optimal control in A.
Remark. We assume that x0 is not in the target T(to), and then Au

=< Ah on [to, to +/t] guarantees that x(t) lies outside T(t) for all responses
and all sufficiently near to.

If the functions u(t) in A satisfy a uniform Lipschitz condition

lu(t’) u(t) <= Kit’
for 11 t, t’ near to, then the function h(t) my be tken to be Kt.

Proof. First let us show that the responses x(t) to controls in A re of
uniform bounded total vrition. We my write

(6.3) x(t) Xo - f(s, x(s), u(s) ds + G(s) du(s).

We compute for the variation of x(t) on [to, tl]"

(6.) v(x, [to, t]) __< If(, x(), u())l d + Gv(u, [to, t]),

where G maxte to,tl G(t) [. But If(s, x(s), u(s)) is uniformly bounded
because the responses x(t) are uniformly bounded and hence v(x, [to, tl]) is
uniformly bounded for all x that are responses to controls in A.
Now, since A is nonempty and the corresponding responses are uniformly

bounded, inf C(u) > , where the infimum is taken over all u in A.
Either A is a finite set, in which case the theorem is trivially true, or we
can select from A a sequence of controls u()(t) on to =< _--< tl for which
C(u()) decreases monotonically to . By [5, Theorem 33, Chap. XII]
there exist a subsequence (which we shall allow to retain the same notation
u()) and a function of bounded vriation u*(t) such that

(6.5) lira u(k)(t) u*(t)

everywhere on [to, tl] and moreover

(6.6) v(u*, [to, ti]) =< lim v(u(), [to, t]).

Now u*(t) is not necessarily continuous from the right in [to, t); therefore
we shall redefine it where necessary so that it is, and call the result (t).
Since this would require that the value of u*(t) be redefined on at most a



264 w.w. SCHMAEDEKE

denumerable set of points we notice that u*(t) (t(t) a.e. in [to, tl] and
in particular, as we shall see, at to, tl, and the points of continuity of (t).
We must show that (t) A. Since (t) is continuous from the right by
construction, this necessitates showing (i) that (t) 2 for to =< =< tl,
(ii) that v(, [to, t]) <= E, (iii) that (t) has a response 2(t) defined on
[to, tl] such that 2(to) Xo and 2(t) T(t), and (iv) that A(t) __< Ah
on [to, to +

(i) Show that (t)
is compact. Now suppose t’ is any point in [to, tl]. We know

(6.7) (t’) limu*(t’

and we may restrict the points t’ + v to be in the set of points on which
the value of u* was not altered. Again we would have (t’) belonging to 2.
Thus (t) belongs to 2 for all in [to, tl].

(ii) By (6.6) we have

(6.8) v(u*, [to, tl]) =< E.

Since we redefine u* to be continuous from the right it is easily shown that
.(t) will have the same (or less) variation as compared with u*(t). Thus
v(, [to, t]) =<

(iii) Define 2(t) to be the solution of the integral equation
P t"

(6.9) 2(t) G(s) dt(s).
.t

We must show 2(t) is response to (t), i.e., that 2(to) Xo and 2(tl)
T(tl). Now the former is obvious since (t) is continuous from the right.

To prove the latter we denote the response to u(k) (t) by x(k)(t); then

(6.10) z() (t) Xo -}- f(s, x() (s), u() (s)) ds %- G(s) du() (s).

Since the total variations of the x()(t) are uniformly bounded then there
exist a subsequence (still labeled x()(t)) and a tunction x*(t) such that

(6.11) lira x()(t) x*(t)

everywhere on [to, t]. We have by Lebesgue’s theorem on dominated con-
vergence that for all [to, t],

(6.12) limf f(, z((), (()) d f(,z*(), ()) d,
k-oo d

because u()(t) -- (t) a.e. in [to, t], x()(t) -- x*(t) everywhere in [to, t],
nd If(s, x()(s), u()(s)) is uniformly bounded by a constant on [to, t].



NONLINEAR VECTOR DIFFERENTIAL EQUATIONS 2135

We want to show next that u*(t) was not altered at to, i.e., that
u (t) is continuous from the right at to. Since Au(k) =< Ah on every sub-
interval of [to, to + ti] and h has a right hand limit at each point of this
interval then it follows that

(6.13) lira u(1)(t -+- s) u(k)(t + O)
s-0+

uniformly with respect to l (of. [5, Theorem 1, Chirp. VII]). Since the
one-sided limits u()(t + 0), u*(t + 0) exist, and since lim_(R) u()(t + s)

u*(t + s) for + s in [to, to + ] we may pply the :[V[oore theorem
o interchunge of order of repcted limits to obtain

(6.14) lira u()(t + O) u*(t + O)

for in [to, to + ]. Thus u*(t) is continuous from the right at to
md u()(to) -- u*(to) and in particular u()(to) --(iv) Show Au --< Ah on every subinterval of [to, to + t]. It follows from
(6.14) that u*(t) is continuous from. the right in [to, to + ] and hence
u(t) u*(t) for in [to, to + ]. Now A lim_(R) Au(). Therefore, given
> 0 there exists aK > 0 such that AI < Au() + or zXul < Ah

-+- e. Since e was rbitrry, then Aul _-<_ Ah.
Since u()(t) are of uiform bourded total vriatio o. [to, t] and

u(k)(t) -- (t(t) t the points to, t., nd at the points of continuity of (t),
we hve by the theorem of Helly arid Bray (of. [11, p. 54]) thtt

(6.15) lira a() d(() a()
k-oo

for at least ll in [to, t] which are poitts of continuity and in prticular
for tl. Thus from (6.12) nd (6.13),

(6.16) limz(() :co -Jr- f(,z*(), ()) d + a() dg()
k->oo

exists for almost all [to, t]. By (6.11) this limit is equal to x*(t) almost
everywhere in [to, t] but in particular it exists for t. Now compare
2(t) with x*(t)

c(t) x*(t) f(s, 2(s), (t(s)) ds f(s, x*(s), t(s)) ds

(6.17)

=< K s:() *() d.

Hence ]() z*() is ero for almost all and in particular i is ero
for , i.e., () z*(). Bug we know from (6.11) ha
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-- x (tl) 2(tl), and since x(k)(tl) T(t) and T(t) is compact then
2(h) T(h). Thus (t) belongs to A.
Now compute the cost of (t). We have by the definition of C(u) that

C(u()) f(,x()(s), u()()) ds.

But x(’)(t) -- 2(t) a.e. in [to, tl] and u(k) (t) -- (t) a.e. in [to, h]. Thus by
Lebesgue’s theorem on dominated convergence we have

(6.18) lim C(u()) f (s, (s), ()) ds C()

and by uniqueness of the limit of C(u(k)) for a subsequence we have

(6.19) lira C(u()) C((t) .
k->oo

Therefore (t) on [to, tl] is an optimal control.
The assumption of a fixed terminal time t in the previous theorem elimi-

nates the application of that theorem to time optimal problems. We can
treat this problem, and, in fact, a more general problem in which the termi-
nal time is not fixed by requiring that G(t) is of class CI[T0, 71] and that
the function h(t) in the definition of A hypothesis satisfies Aul =< Ah for
every subinterval of the interval [to, T].
THEOUEM 13. Given the control problem for the data (a) through (e) of

Theorem 12 with the further requirements that in (a) the elements of G(t) are

of class CI[T0, T] and that (f) be replaced by:
(f) the set A A(f(t, x, u), G(t), , Xo, T(t), E, h(t)) of admissible

controls u(t) defined on subintervals [to, tl] contained in [T0, T1] with the same

left endpoint to (and perhaps different right endpoints tl to) is such that

Aul <= Ah on each subinterval of [to, tl] for the given nondecreasing right
continuous function h(t) defined on [to, T].
Assume further that
A A is nonempty,
(B) there exists a real bound B such that for all responses x( t) cor-

responding to controls in A, Ix(t) <= B.
Conclusion: Then there exists an optimal control in
Proof. The computation at the beginning of the proof of the previous

theorem was designed to show that responses x(t) to controls in A are of
uniform bounded total variation whether they be defined on the same in-
terval or whether the interval depends on each separate control.

Proceeding as before, we let inf C(u) > -. If A is finite the
theorem is trivially true; hence we assume A has infinitely many controls
and we select a sequence u()(t) from A such that the u(k) are defined on
intervals [to, t()] for which C(u()) decreases monotonically to . Select
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a subsequence (which we shall still label u()(t)) such that
monotonica,lly decreasing fashion. We will denote this by t() t* (the
case t. () t* will be considered lter). Next choose such that *t() t(+) < r for some 0. (From now on all reference to the
index k tcit]y assumes > leo .) Then extend the controls u()(t) to the
interval [t0 ,] by defining

fU()

(6.20) ()(t) u()
(t) if t0 t(),
(/()) if t() < .

Sice u() t)
for t0 . Also we have ()(t) continuous from the right for every

[t0, ) and when () is restricted to the interval [t0, t()] it is simply
u() (t) and thus () (t) A.
Now

are of uniform bomded vriation, in fct, v(u, [to, t]) h(rl) h(to).
Thus
subsequence of () (which we still label ()) and a function u*(t) defined
o [t0, i] such that

(6.21) lira ()(t) u*(t)
k

everywhere on [t0, ] and moreover

(6.22) v(u*, It0, 1]) lim v(() [to ])

We know u*(t) is continuous from the right on [t0, ) by the same calculi-
tion that verified u*(t) was continuous from the right in [t0, t0 + ) in
Theorem 12.

Observe that for t() we have

(6.) (’)(t()) u*(t*),
because for ny r > t* we know ()(v) ()(t()) for sufficiently
lnrge (i.e., such that t
u (r). Thus u*(t) is constant on (t*, ] nd sice u (t) is right continuous
we huve

(6.24) lira u*(t) u*(t*),
ttl*

i.e., u*(t) hs the constant vlue u*(t*) on the interval [t*, ]. In prticu-
lr,

(6.25) u*(t
for all
We must show that u*(t)
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(i) Show that u*(t) . This to]lows from (6.21) and the compactness
of .

(ii) The fact that [Au*l =< hh on each subintervfi of [to, t] follows
trivially.

*((iii) Show that u* has a response x t) on [to, ’] such that is restriction
to [to, h*] stisfies x* (t0) x0 and x* (t*) T(t*). Denote the response
to ()(t) by

ftt () ,() ftt(6.26) 2()(t) Xo - f(s, (s) (s)) ds + G(s) dCt()(s).

We must show thut each response x()(t) on [to, h()] cun be extended
to the interval [to, ] using the extended controls in such a wy that the
sequence of extended responses ()(t) is uniformly bounded on [to, t]. Then
if the 2()(t) are uniformly bounded they will also hve uniform bounded
total ariation as seen from the fact that calculuting the variation in (6.26)
yields

(6.27) v(2(), [to, 1]) ft If(s’ (k’)(S)’ (k)(’)) ds + G)((/c), [to, 1]).

But the last term is less than or equal to G[h(-) h(to)] because v(
[to, ]) (u() [to, tl ]). Also the integrand in the integral term is uni-
formly bounded if the sequence 2()(t) is uniformly bounded.
To show 2() (t) is uniformly bounded we note that every point x() (t())

is contained in the sphere Ix _-< B. Let 2 be an arbitrary point in this
B-sphere and consider the equation

(6.28) (t) 2 -t- f(s, 2(s), no) ds

for some constant value u0 . Because f C with respect to x nd f is
continuous in and u u0 is held fixed we have by the Carathodory exis-
tence theorem for ordinary differential equations [3] that (6.28) has
unique absolutely continuous response 2(t) on the interval [h, tl -t- a] for
which 2(t) 2. We have only to consider the closed sphere Ix 21 =< B
and time t sufficiently near to t* (but greter than t*); then every solu-
tion of (6.28) is in the sphere xl =< 2B if is in the interval [t*, t* a]
for an appropriate value of a which is nonzero nd depends on f and f.
Then from (6.26) we cn write

ft
t()

ft2()(t) Xo + f(s, x(’)(s), u()(s) ds + G(s) du(s)

(.) + f(, () (()) d
()

z()(t()) + f(s, 2()(s) u()(t()))ds,
()
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which is of the form (6.28), and hence it follows that 2(k)(t) are uniformly
bounded on [to, 1].

Since the total variation of 2(k)(t) is uniformly bounded for all/c there
exist a subsequence of 2(k)(t) on [to, 1] (still retaining the notation 2(k))
and a function x*(t) such that everywhere on [to, ] we have

(6.30) Jim 2(k)(t) x*(t).

By selecting the corresponding subsequence from a(k) we do not change any
of the preceding limiting operations satisfied by (k)(t).
By (6.21) and (6.30) we have

(6.31) lira f(t, 2(k)(t), (k)(t)) f(t, x*(t), u*(t))

everywhere on [to, ’] and since f(t, 2(k)(t), (k)(t)) ]is uniformly bounded
on [to, ] we have by Lebesgue’s theorem on dominated convergence that

(6.32) lim fk-->
f(s, 2(k) (s), it (k) (s) ds f(s, x*(), u*(s)) s

for ech fixed [to, ’]. Also by (6.21) nd the fact that (k)(t) are of
uniform bounded total wriation we obtain by n ppliction of the theorem
of Helly-Bray that for all continuous G(s),

6.33 lira G(s d(k) (s)
k->

for each fixed [to, ]. Now consider

G(s) du*(s)

2:() (s), dslira 2() (t) Xo + lira f(s,
k--) k-

(6.a4) + lim a() d(()

Xo + f(s, x*(s), u*(s)) ds + G(s) du*(s)

by virtue of (6.32) and (6.33). Thus lim 2()(t) exists for cch [t0, il]
nd by uniqueness of the limit we hve from (6.30) that

(.a) z*() zo + f(, (), *()) + a() *()

is ghe response o u*(). I is obvious hag z*(o) zo and so we musg

finally show hag z*(t*) T(*). To ghis end consider

x()(t(’)) x*(t*)l]x()(t())
(6.36)

+ x*(t()) x*(t*)[,
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Since x*(t) is continuous from the right (because u* is) then x*(tl
x*(t*), and hence the last term on the right offers no trouble. To handle
the first term we proceed as follows"

l(k)

x()(t)) *(t)) f(s,()(s), ()(s)) &

f
tl(k)

(6.37) ,o
f(s, x*(s), u*(s) ds f"()

to
G(s) du*(s)

tl(k)

[f(s, xV)(s), u(k)(s)) f(s,x*(s), u*(s))] ds

G(s) d[()(s)

Now

(6.38)
[f(s, x() (s), e() (s)) f(s, x*(s), u*(s) )] ds

tl(k)

+ [f(s,x()(s),it()(s)) -f(s,x*(s),u*(s)]ds,
1"

and since the integrand of the first term is uniformly bounded on [to, tl*]
and approaches zero everywhere in that interval by (6.31), the first term
on the right approaches zero. The second term on the right has a bounded
integrand over a path of integration which goes to zero. Hence limk+ I1

0. Next we consider I2 and use integration by parts"

(6.39)

The first term on the right approaches zero for exactly the same reasons as
those in establishing (6.38). The second term approaches zero by virtue of
(6.23) and (6.24) while the third term approaches zero by virtue of (6.21).
We have thus established that

(6.40) lira x(k) (t()) x* (11").
k->m

Now xV)(tl(k)) T(t()) for k 1, 2, 3, and x*(tl*) lim+ x()(t(k)).
If x*(t*)were not in T(t*) then there would exist a neighborhood N of
the compact set T(h*) so that x*(t*) is not in the closure f of N. But
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T (t) c N for sufficiently near tl* and thus x(k)(tl(k)) N for lrge/c. But
x (tl*) ( f and this is a contradiction; therefore x*(t*) T(t*) and
the control u*(t) on t0 t* belongs to A.

It is an easy matter to compute the cost of u*(t), for
t()

f (s, () (s)) ds

tl*

(6.41) f(s, x()(s), ()(s)) ds

t() fo u()+ (s, x
1"

Now f(s, x() (s), u() (s)) [is uniformly bounded on [t0 and thus the
last term approaches zero because the path of integration approaches zero.
Then by applying Lebesgue’s theorem on dominated convergence to the
first term we obtain

(6.42) lira C(()) (s, x*(s), u* (s) ds C(u*)
k dt

and thus u*(t) on t0 t* is n optimal control.
Return now to the assumption that t() . t,*. Suppose instead that

t() t*. Then extend each control u()(t), for sufficiently large }, to the
interval [t0, ] by setting 1 t* + for appropriately small > 0 and
defining

()(t) {::::(t) if t0 t t(),
(t()) if t() < 5 1.

As before there exist subsequence (still to be labelled ()(t)) and
function u*(t), necessarily of bounded variation and continuous from the
right, such that
(6.43) lira ()(t) u*(t)

everywhere on [t0, ]. Furthermore it is clear that the extended controls did
not receive an increase in vriation and hence

v(u*, [t0, t*]) 5 lim v((), It0, t*]) [h(ri) h(t0)].

We know ech extended response 2()(t) on [t0, 1] is ngain uniformly
bounded by the same calculations as those in (6.27)-(6.29). Thus the total
viation of 2() (t) is uniformly bounded and there exist subsequence
(still to be labelled 2()(t) and a function of bounded variation x*(t) such
that everywhere on [t0, ] we hve
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(6.44) lim 2(k)(t) x*(t).
k--

By (6.43) and (6.44) we have

(6.45) ]im/(t, 2(k)(t), (k)(t)) f(t, x*(t), u*(t))

everywhere on [to, ’1]; and since If(t, x, u) is uniformly bounded on
[to, ’1] for u in A (and x therefore bounded by hypothesis B) we have by
Lebesgue’s theorem on dominated convergence that

(6.4.6) Jim f(,:(k(),g()) d f(,z*(),*()) d
k

for each fixed in [to, ]. Also by (6.43) and the fact that ()(t) are of
uniform bounded total variation we have by an application of the Helly-
Bray theorem that for all continuous G(s),

(6.47) lim a() dg(() G() d*()
k

for each fixed in [t0, t]. Therefore

(6.48) lira () Xo + f(s,x*(s), u*(s)) ds + G(s) du*(s)
k

nd by uniqueness of the limit it follows from (6.44) that

(6.49) x*(t) Xo + f(s, x*(s), u*(s) ds + G(s) du*(s)

is the response to u*(t). It is evident that x*(t0) x0 so all that remains
is the verification that x*(t*) T(t*).

Consider

x(’)(t()) x*(t*) x()(t())
(6.50)

+ g(t*) z*(t*).
Since x()(t*) x*(t*), the last term on the right offers no trouble. To
hndle the first term on the right we proceed s follows"

t(k)

x<) (t()) )(t*) f(s, x() (s), )(s) ds

(6.51) + G(s) d()(s) f(s, 2(a)(s), ()(s)) ds

l*
G(s) du() (s)

f(, (), ()) a() () I + I.
(k)
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The integral I1 obviously goes to zero as/ -- . As for I. we have

G(s) d(*) (s) _tit’
,It

But ()(t*) ()(t()). Hence

a() d(()
(6.53) ()

(s)t()(s) ds + G(t*)()(t*)

G(t())() (t()).

(s)() (s) ds

+ ()(t*)[G(h*) G(t(*))]"
Both terms on the right approach zero as / approaches and we have
from (6.50) that

(6.54) lira x()(h()) x*(t*).

Thus, exactly as before, x*(t*) T(h*) and therefore u*(t) on [to, t*] lies
in A.
The cost of the control u*(t) is computed exactly as in (6.41) and (6.42)

and we have that u*(t) on [to, t*] is an optimal control.
The following example illustrates a situation where the optima] control

fails to exist. (A prime on a vector denotes the transpose of that vector.)
Consider the equations

Dx X
Dx -x + u(t) + Du.

The initial point is x0 (0, 0)’ and the target is the fixed point (0, 1)’. The
restraint set 2 is -1 _-< u _-< 1. The set A is the set of all controls of uniform
bounded variation with fixed initial time 0. The actual bound E on
the total variation is only assumed to be greater than 1 and no restriction
regarding the existence of a nondecreasing function h(t) such that
__< hh for all u in A is imposed.
Consider the controls

(k)u (t)=

defined on [0, 1]. Then

x(t) x(O) + ]

1
0 if O<=t<,

1
1 if =<t,

x(s) ds + fot u(s) ds + u(t) u(O)
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Hence

1
0 if O=<t<,

x(k)(t) 1
1 if lc"

fo x(s) ds O= x

and the sequence u(k) (t) is a sequence of controls in A. But the infimum of
the cost functional is

lira C(u()) lira
1 O.

The only control u*(t) in A which will produce a minimal time of 0 is the
"multiple valued control" u(O) O, u(O) 1; hence an optimal control
does not exist. Notice that there does not exist a nondecreasing function
h (t) such that

u( __< h,

but that all other hypotheses of the theorem are satisfied.

7. Existence of optimal control for ordinary differential system. The
foregoing methods may be applied to the ordinary control problem, i.e.,
no measure appearing in the right side, to extend the results of that problem
to the case where the control enters nonlinearly (see [1], [2], [6]). Because
the responses are absolutely continuous in this case, it is not necessary to
make the controls continuous from one side or the other, but rather that
is left open to be decided in a particular application. All that is required
is that the class of admissible controls have uniform bounded total varia-
tion (rather than being merely measurable as in [1], for example).
THEOREM 14. Consider the control problem for the data:

(a) 2 f(t, x n),’’’,X,U, ,U fori 1, ...,n, withf(t,x,u)
and Oft(t, x, u)/Ox, t 1, n, continuous on R

(b) a nonempty, compact restraint set c R’;
(c) the initial point xo R;
(d) the continuously moving nonempty compact target set T(t) c R on

[TO, T1];
e the cost functional

c() (, (), () ,
where fo( t, x, u) is continuous on R X R X R".
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Assume the set A consists of controls with values in and with v(u, [to, tl])
<- E uniformly for all u in A, and with responses traveling from xo to T. As-
sume

A A is nonempty; and
(B) there exists a real bound B such that for all responses x( t) cor-

responding to A, Ix(t) <= B uniformly for all responses.
Conclusion" Then there exists an optimat control in A.
Proof. Since A is nonempty and the corresponding responses are uniformly

bounded, inf C(u) > , where the infimum is tken over all u A.
Either/ is a finite set in which case the theorem is trivially true, or we can
select from A a sequence of controls u(k) (t), defined on various intervals
t0(k) =< =< tl(k), for which C(u(k)) decreases monotonically to . Select a
subsequence of t0

(k) such that t0(k) -- to* monotonically. Similarly select a
subsequence of tl (k) such that t(k) -- t* monotonically. First treat the case
where t(k) -- t* from above and where t0(k) -- to* from below (other cases
will be treated later). Now we may select a subsequence of u(k) (still to be
labelled u(k)) such that there is a function u*(t) defined on [to*, tl*] with
u* (t) necessarily of bounded variation for which

(7.1) lira u(k)(t) u*(t)

everywhere on [to*, t*]. We show that u*(t) on [to*, t*] belongs to A. Note
that

(7.2) v (u*, [to*, h*]) =< E
and that u*( t) on [to*, h*].

Let x(k)(t) denote the response to u(k)(t), i.e.,

(7.3) x()(t) Xo - f(s,x(k)(s) u(k)(s)) ds.
0()

Since the responses xk>(t) are uniformly bounded they also have uniform
bounded total variation on their intervals and in particular on It0*, t*].
As before, there are a subsequence of xCk> () and a function x* (t) of bounded
variation on [0", 1"] such that (retaining same notation)

(7.4) ]imx()(t) x*(t)
k->oo

everywhere on [to*, t*]. Now we write

x() (t) Xo + f(s, x(k) (s), u() (s)) ds

(7.5)
tO*

+ f(s, x(k) (s) u() (s)) ds.
o()
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The last term approaches zero as lc approaches infinity and the first integral,
by Lebesgue’s theorem on dominated convergence, has the limit

(7.6) ]im f(s, x()(s), u()(s)) ds f(s, x*(s), u*(s)) ds
k( O* O*

for all in [to*, t*]. Thus

(7.7) lim z(() :co -t- f(, z*(), *()) d
k- 0*

exists and because of the uniqueness of the limit it follows from (7.4) that

(7.s) x*() xo + f(, x*(), u*() d
O*

is the response to the control u*(t) stisfying x*(to*) Xo.
Now consider

()(()) x*(*) _-< [x()(t())
(7.9)

+ x()(*) x*(*)I.
We have for n. appropriate constant B :> 0 that

(7.10) x()(t()) x()(t*) --< B Iti() t* ],
since the derivative f(t, x, u) (i.e., 2) is uniformly bounded for responses
in A. Thus (7.9) and (7.10) imply

(7.11) lira x() (t()) x*(t*).

Now x()(h()) T(t()) for each k; therefore if x*(t*)

_
T(t*) there

would exist neighborhood N of the compact set T(t*) such that x*(h*)
is not in the closure of N. But T(t) N for sufficiently near t* and thus
x()(t()) N for lrge l und yet x*(h*) is not in . This is a contradic-
tion nd therefore x* (t*) T(t*). Hence the control u* (t) on [to*,
belongs to A.
To compute the cost of u*(t) we consider

t

(7.12) C(u())
(

f(s, x() (s), u() (s)) ds.

By arguments similar to those leading to (7.8) we obtai

(7.13) lira C(u()) f(s,x*(s), u*(s)) ds C(u*),
k-> O*

and thus by uniqueness of limit for a subsequence we hve

(7.14) C(u*) lira C(u()) .
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Therefore u*(t) on [to*, t*] is an optimal, control.
Returning to the assumption

to() to*, t() $ t*,
suppose instead we have

t0() -_< /o*, t() =< t*
(the other cases can be treated similarly). Extend each control u()(t) to
the interval [to, q*] by defining u()(t) u()(t0()), constant on
t() _-< _-< t*. Again there are a subsequence of u()(t) and function
u*(t) of bounded variation defined on [to*, q*] such that v(u*, [to*, t*]) =< E
and

(7.15) limu()(t) u*(t)

everywhere in [to*, t*]. It is clear that u*(t) t.
The extended responses are all uniformly bounded on [to*, t*] because

M1 the unmodified responses lie in some sphere centered at the origin of
radius p, sy, and a calculation similur to that in Theorem 13 shows that
for t* t() sufficiently small, the extended responses lie in a sphere of at
most radius 2p centered at the origin. By choosing subsequence of x() (t)
there is a corresponding function x*(t) defined on [to*, t*] and of bounded
variation there such that

(7.16) limx()(t) x*(t)

everywhere on [to*, t*].
Exactly as was done in leading up to (7.8) we obtain that x*(t) is the

response to the control u* nd that x* (to) xo
Now x()(t()) T(t()) and

(7.17) lira x*(q()) x*(q*)

because x*(t) is absolutely continuous. Thus

(7.18) x*(t*) lira [x*(q()) x()(q()) + x()(q())],
k->

but

(7.19)

x() (t()) z* (t())
t()

o()
If(s, x() (s), u() (s)) f(s, x*(s), u*(s) )] ds

tl*

1()
f(, x*(s), u*(s) ds



278 w. w. SCHMAEDEKE

and since f(s, x, u) is continuous in x and u while f(s, x*, u*) is bounded,
we have by Lebesgue’s theorem on dominated convergence that

(7.20) x()(q()) x*(t())l-- O.

Then from (7.18) it follows that

(7.21) lim x() (t()) x*(t*)

and, as before, x*(tl$) T(tl*) aS required. Therefore u* (t) on [to*, t*]
lies in A.

Finally, we consider

tl(k)

(7.22) C(u())
"to()

f(s’ x()(s)’ u()(s) ds.

Using the extended controls and responses and Lebesgue’s theorem, this is
seen to approach C(u*) as/c -- and by uniqueness of the limit it also
approaches N. Thus u*(t) on [to*, t*] is an optimal control.
Remark 1. The velocity f(t, x, u) need only be defined and satisfy the

hypotheses of the theorem for ro <= <= r, x 0 Rn, U R
where 0 is an open set in R" which contains the initial point x0, the moving
target T(t), and all the responses of A in a compact subset.
Remart 2.. Note hypothesis (B) is satisfied if for some real a,

f(t, x, u) < a, i 1, ..., n

or if

f (t, x, u)

in [0, r] X R X . Thus (B) is always stisfied iff(t, x, u) are linear in x.
Remark 3. This theorem is aextensioaof Theorem I of [1]. It ]so includes

Theorem 2 of [1] as a special case because the class of controls which satisfy
a uniform Lipschitz condition

[u(t) u(t’) <= A It- t’
for all pairs t, t’ on [0, ] is clearly also of uniform bounded totul variation.
Remarl 4. Consider the set A (t0) defined to be that subset of A for which

the control u(t) and the response x(t) initiate at a fixed to. If A(t0) is non-
empty and if the responses x(t) for u(t) A(to) are uniformly bounded
then there exists a control u* (t) A (t0) which is optimal relative to A (t0).
The same applies to the set /x(t0, tl) A(t0) where the time interval
[to, t] is fixed.
The following example illustrates a situation where the optimal control

fails to exist.
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Let the equations be

2 sin2u, 2 cos2u, i -1 inR3.
The initial point is (0, 0, 1) and the target is the fixed point (0, 0, 0) on
the time interval 0 _-< _-< tl _-< 2. The restraint set is-1 -< u -< 1 and
the cost functional is

tl
C(u) fo (x -+- y2) dt.

Consider the class h to be the set of controls A(0), but without the restric-
tion of uniform bounded total variation. Consider the piecewise linear
controls u(k) (t) such that

sin 2u(k) (t) sin 2kt,

cos 2ru(k) (t) cos 2kt,

for k 1, 2, 3, .... The corresponding responses are

1 cos 2-lct

y(k) (t) sin 2kt
2r/

z(k)(t) 1 t.

Thus x(k)(1) O, y()(1) O, z() (1) O. The cost functional for tl 1 is

Thus

C(u()) J0" 1
22]ccs2’lct

2.2]2

lim C(u()) O,

and 0 is the infimum for all C(u) with u in A(O). Yet there is no
optimal control u*(t) on 0 =< -<_ 1 for which the cost is

fl Y*)C(u*) (z* + dt O,

for such an optimal control requires the response x*(t) O, y*(t) 0
which in turn implies

sin 2u*(t) 0, cos 2u*(t) 0,

for almost all t. But this is impossible and hence there does not exist an
optimal control for this problem. Note that the control functions u() (t)
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are not of uniform bounded total variation on the interval [0, 1] but that
all other hypotheses of the theorem are satisfied.
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PSEUDO-CONVEX FUNCTIONS*

O. L. MANGASARIAN
Abstract. The purpose of this work is to introduce pseudo-convex functions and

to describe some of their properties and applications. The class of all pseudo-convex
functions over a convex set C includes the class of all differentiable convex functions
on C and is included in the class of all differentiable quasi-convex functions on C.
An interesting property of pseudo-convex functions is that a local condition, such as
the vanishing of the gradient, is a global optimality condition. One of the main
results of this work consists of showing that the Kuhn-Tucker differential conditions
are sufficient for optimality when the objective function is pseudo-convex and the
constraints are quasi-convex. Other results of this work are a strict converse duality
theorem for nathematical programming and a stability criterion for ordinary dif-
ferential equations.

1. Introduction. Throughout this work, we shall be concerned with the
real, scalar, single-valued, differentiable function O(x) defined on the non-
empty open set D in the m-dimensional Euclidean space Em. We let C be a
subset of D and let V denote the m X 1 partial differential operator

here he prime denotes he rnspose. e sy h (z) s po-oz

(1.1) (x x)’VO(x) >->_ 0 implies 0(x2) >-O(x).

We say that O(x) is pseudo-concave on C if for every x and x in C,

(1.2) (x2- x)’VO(x1) <= 0 implies 0(x2) <-O(x).

Thus O(x) is pseudo-concave if and only if -O(x) is pseudo-convex. In
the subsequent paragraphs we shall confine our remarks to pseudo-convex
functions. Analogous results hold for pseudo-concave functions by the
appropriate multiplication by -1.
We shall relate the pseudo-convexity concept to the previously estab-

lished notions of convexity, quasi-convexity [1], [2] and srict quasi-con-
vexity [3], [5].
The function O(x) is said to be convex on C, [2], if C is convex and if for

every x and x in C,

(1.3) O(hx - (1 h)x2) _<- O(X1) " (1 )t)0(X2)
* Received by the editors March 4, 1965.
Shell Development Company, Emeryville, California.
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for every X such that 0 =< X =< 1. Equivalently, O(x) is convex on C if

(1.4) O(x2) --O(X1) ’ (X2- xi)tVx,O(X1)
for every x and x in C.
The function 0(x) is said to be quasi-convex on C, [1], [2], if C is convex

and if for every x and x in C,

(1.5) O(x) <= 0(x1) implies O(hx - (1 h)x2) _-< O(x)
for every }, such that 0 }, =< 1. Equivalently, 0(x) is quasi-convex on
C if

(1.6) O(x) O(X1) implies (X X1) Vx (X1) O.

The function 0(x) is said to be strictly quasi-convex on C, [3], [5], if C is
convex and if for every x and x in C, x x,

(1.7) t(x) < 0(X1) implies O(X - (1 k)x) < O(x1)
for every X such that 0 < X < 1. It has been shown [5] that every lower
semicontinuous strictly quasi-convex function is quasi-convex but not
conversely.

In the next section we shall give some properties of pseudo-convex func-
tions and show how these properties can be used to generalize some previous
results of mathematical programming, duality theory and stability theory
of ordinary differential equations. Theorem 1 generalizes the Arrow-
Enthoven version [1, Theorem 1] of the Kuhn-Tucker differential sufficient
optimality conditions for a mathematical programming problem. Theorem
2 gives a generalization of Huard’s converse duality theorem of mathe-
matical programming [4, Theorem 2] and Theorem 3 ge.neralizes a sta-
bility criterion for equilibrium points of nonlinear ordinary differential
equations [8, Theorem 1].

2. Properties of pseudo-convex functions and applications. In this sec-
tion we shall give some properties of pseudo-convex functions and some
extensions of the results of mathematical programming and ordinary dif-
ferential equations.
PROPERTY 0. Let O(x) be pseudo-convex on C. If V0(x) 0, then x is a

global minimum over C.
Proof. For any x in C,

( x)’v0(x) 0,
and hence by (1.1),

O(x) >__ O(x),
which establishes the property.
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PIOeERTY 1. Let C be convex. If O(x) is convex on C, then O(x) is pseudo-
convex in C, but not conversely.

Proof. If 0(x) is convex on C, then by (1.4),

(x x) V0(x >= 0 implies 0(x

which is precisely (1.1). That the converse is not necessarily true can be
seen from the exalnple

t(x) - x + x, x E,
which is pseudo-convex on E but not convex)
PIOPEnTY 2. Let C be convex. If O(x) is pseudo-convex on C, then O(x) is

strictly quasi-convex (and hence quasi-convex) on C, but not conversely.
Proof. Let O(x) be pseudo-convex on C. We shall assume that O(x) is not

strictly quasi-convex on C and show that this leads to a contradiction. If
O(x) is not strictly quasi-convex on C, then it follows from (1.7) that there
exist x x in C such that

(2.1) O(x) < O(xX),
and

(2.2) 0(X) __>-- 0(X1),
for some x L, where

(2.3) L {x Ix Xx+ (1 ,)x,0 < < 1}.

Hence there exists an L such that

o() mx O(x),
x

(2.4)

where

(2.5)

Now define

(2.6)

Hence

(2.7)

where

(2.8)

L L U {X X2}.

f(h) 0((1 h)x -}- hx2),

o(e) f(x),

0=<),=< 1.

a (1 X)x1-k Xx=, 0 < X < 1.

To see that x -k x is pseudo-convex, note that V.0(x) 1 q- 3x > 0. Hence
(x x)’V.O(x) >= 0 implies that x >- x and x >- (x) a, and thus

O() O(x) (x + x) (xo + (0)) >= 0.
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We have from (2.4) through (2.7) that f(h) chieves its mximum at X.
Hence it follows by the differentibility of 0(x) nd the chain rule that

(2.9) (x" xl)tvx 0(’) df() 0,
dh

Since

(2.10) x a x 1 X)x XZ ]. X) (X X1),
it follows from (2.9) and (2.10) and the fact that X < 1, that

(2.11) (x=- a)’V0(a) 0.

But by the pseudo-convexity of O(x), (2.11) implies that

(2.12) 0(x=) >= 0(a).

Hence from (2.1) and (2.12),

O(x) > o(,),

which contradicts (2.4). Hence 0(x) must be srictly quasi-convex on C.
That the converse is not necessarily true can be seen from the example

0(x) =- xa, x E,
which is strictly quasi-convex on E, but not pseudo-convex.
PROPERTY 3. Let C be convex. If O(x) is pseudo-convex on C, then every

local minimum is a global minimum.
Proof. By Property 2, 0(x) is strictly quasi-convex on C. Now if 2 is a

local minimmn, then

(2.13) 0(a) =< O(x) for every x N(a) f’l C,

where N(2) is some neighborhood of 2. Let x be any point in C, but not in
N(a) f’l C. Then there exists a X, 0 < Y, < 1, such that

2-- ((1 X)a q- Xx) N(a) C.

Now if 0(x) < (2), then by the strict quasi-convexity of 0(x),

e() > e(),

which contradicts (2.13). Hence O(x) >= O(a), which proves Property 3.
THEOREM 1..Let O(x), g(x),..., gn(X) be differentiable functions on

E Let C be a convex set in E and O(x) be pseudo-convex on C and g(x),
g(x) be quasi-convex on C. If there exist an x C and yo E satisfy-

A local minimum is an 2 C such that 0(2) =< 0(x) for all x N(2) l C, where
N(2) is some neighborhood of 2.
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ing the Kuhn-Tucker &erential conditions [7], namely,

(2.14) V0(x) + Vy gi(x O,
i==1-(2.15) yi g(x O,

i1

g(x) <= O,

y > O,

(2.16)

(2.17)

then

,n,

n,

(2..as) e(x) i. {O(x)] e(x) __< o, i , ..., n}.
xEC

Proof. The proof is similar to part of the proof of [1, Theorem 1]. Let

I {ilg(x) < 0}.

Hence g(x) 0 for i ( I. From (2.15), (2.16) and (2.1.7) it follows that

(2.19) Yi 0 for i I.

Let
R lx]g(x) <= O, i 1, 2, n, x C}.

Then g(x) <= gi(x) for i ([ I, x R. Hence by the quasi-convexity of

the g’s on R it follows from (1.6) that

(2.20) (x x)’Vg(x) -< 0 for i I, x R.

Hence by (2.20) and (2.17) we have that

(2.21) (x xO),7 xY gi( <= 0 for x R,

and from (2.19) we have

(2.22) (x x)’V xygi( 0 for x R.
iEI

Hence (2.21) and (2.22) imply

(x x)’V

_
yg(x) <= 0 for x R,

i=l

which in turn implies, by (2.14), that

(2.23) (x x)’VO(x) >= 0 for x R.

But by the pseudo-convexity of 0(x) on R, (2.23) implies that

O(x) >= O(x) for x R.
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For the case when the set I is empty, the above proof is modified by
deleting (2.19), (2.22) and references thereto. For the case when I

11, 2, n} the above proof is modified by deleting that part of the
proof between (2.19) and (2.22) and references thereto.

It should be noted here that the above theorem is indeed a generalization
of Arrow and Enthoven’s result [1, Theorem 1]. Every case covered there
is covered by the above theorem, but not conversely. An example of a case
not covered by Arrow and Enthoven is the following one"

min[--e-X x _-< 0}.
xE

Another application of pseudo-convex functions may be found in duality
theory. Consider the primal problem

(PP) rain {O(x)l g(x) <= 0},
x Em

where O(x) is a scalar function on E and g(x) is an n X 1 vector function
on Em. For the above problem Wolfe [10] has defined the dual problem as

(DP)

where

max {b(x, Y)l V(x, y) 0, y 0},
x Em,y E

(x, y) O(x) + y’g(x).
Under appropriate conditions Wolfe has shown [10, Theorem 2] that if
x solves (PP), then x and some y0 solve (DP). Conversely, under some-
what stronger conditions, Huard [4, Theorem 2] showed that if (x, y0)
solves (DP), then x solves (PP). Both Wolfe and Huard required, among
other things, that O(x) and the components of g(x) be convex. We will now
show that Huard’s theorem can be extended to the case where O(x) is
pseudo-convex and the components of g(x) are quasi-convex, and that
Wolfe’s theorem is not amenable to such an extension.
THEOREM 2. (Strict converse duality theorem). Let O(x) be a pseudo-convex

function on E and let the components of g(x) be differentiable quasi-convex
functions on Em.

(a) If (x, yO) solves (DP) and (x, yO) is twice continuously differeutiable
with respect to x in a neighborhood of x, and if the Hessian of (x, yO) with
respect to x is nonzero at x, then x solves PP.

(b) Let x solve (PP) and let g(x) <= 0 satisfy the Kuhn-Tucker constraint
qualification [7]. It does not necessarily follow that x and some yO solve (DP).

Proof. (a) The assumption that the Hessian of (x, y0) with respect to
x is nonzero at x insures the validity of the following Kuhn-Tucker neces-

For the difference between "duality" and "strict duality," the reader is re-
ferred to [9].
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sary conditions for some v Em"

V(xo, yO) + vxvo,v(xO, yO) O,

V(xo, yO) + vvO,vb(xO, yO) =< 0,

yO,Vy(x, yO)
_

yO, vyvO,Vx(x, yO) 0,

yO >__ 0,

V(xo, yO) 0.

The first and last equations above, together with the assumption that the
Hessian of (x, yO) is nonzero at x, imply that v 0. Hence the above
necessary conditions become"

Vx(xo, yO) 0,

V(xo, yO) g(xo) <= O,

yO,Vb x, yO yO,g xo) O,

y>= O.

But from Theorem 1, with C Em, these conditions are sufficient for
x to be a solution of (PP).

(b) This part of the theorem will be established by means of the follow-
ing counter-example"

(PP1) min{-e- -x + 1 __< 0},
xE

(DP1) max {--e yx q- y 2xe- y O, y >= 0}.
x EI,y E

The solution of (PP1) is obviously x 1, whereas (DP1) has no maximum
solution but hs a zero supremum.

Finally, we give an application of pseudo-concavity outside the realm of
of mathematical programming. In particular, we extend a stability criterion
for equilibrium points of ordinary differential equations [8, Theorem 1].
TIEOREM 3. (Stability criterion). Let

f(t, x)

be a system of ordinary differential equations, where x andf are m-dimensional
vectors and 0 <= < . Let f(t, x) be continuous in the (x, t) space and let
f(t, O) 0 for 0 <- < , so that x 0 is an equilibrium point. If xf(t, x)
is a pseudo-concave function of x one for 0 <= < , then x O is a
stable equilibrium point.
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Proof. Consider the Lyapunov function

V(x,t) XX

which is obviously positive definite. It follows that for 0 =< < ,
? x’ x’f(, x) <= o,

where the last inequality follows from the pseudo-concavity of x’f(t, x) it
x and the fact that f(t, 0) 0. Hence by Lyapunov’s stability theorem
[6], x 0 is a stable equilibrium point.

It should be noted that the above proof would not go through, had we
merely required that x’f(t, x) be qusi-concave instead of pseudo-concave.

3. Remarks on pseudo-convex functions. Properties 1 and 2 and the
fact that every differentiable strictly quasi-convex function is also quasi-
convex [5] establish a hierarchy among differentiable functions that is de-
picted in Fig. 1. In other words, if we let $1, S, Sa, and $4 represent the
sets of all differentiable functions defined on a convex set C in E that are,
respectively, convex, pseudo-convex, strictly quasi-convex, and quasi-
convex, then

S S S c= $4.

Functions belonging to S, S, or Sa share the property tha a local mini-
mum is a global minimum.. Functions belonging to $4 do not necessarily
have this t)ropcrty. The Kuhn-Tucker differential conditions are sufficient
for optimality, (see (2.18)), provided that g(x), i 1, n bclon.g to
S and 0(x) belongs to S or S=, but not if 0(x) belongs to Sa or S. I
seems that the pseudo-convexity of O(x) and the quasi-convexity of g(x)
are the weakest conditions that can be imposed so that relations (2.14) to
(2.17) gre sufficient for optimality.
There does not seem to be a simple extension of the concept of pseudo-

convexity to nondifferentiable functions. This may be due to the fact that
pseudo-convexity eliminates inflection points, and such points are easily
described by derivatives, but not otherwise.

Finally, it should be remarked that the convexity of the set C is inherent
in the definition of quasi-convexity. In contrast, the convexity of C is not
needed in the definition of pseudo-convexity. Thus, without the convexity
of C, we may have a pseudo-convex function that is not quasi-convex. For
example, over the nonconvex set

C {x]x E,x 0},
the function

{: for x<O,O(x) A- 1 for z > O,

is pseudo-convex bu obviously no quasi-convex, since C is nonconvex.
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Strictly (\)uasi-Convex

Pseudo-Convex

Fro. 1

4. Acknowledgement. I am indebted to my colleagues, S. Karamardian
and J. Ponstein, for stimulating discussions on this paper.
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OPTIMAL CONTROL, INEQUALITY STATE CONSTRAINTS,
AND THE GENERALIZED NEWTON-RAPHSON

ALGORITHM*

ROBERT MCGILL

Introduction. The generalized Newton-Raphson algorithm [1] has been
developed as a tool for efficiently extracting solutions to nonlinear prob-
lems of optimal control by means of the modern high speed digital com-
puter. This paper presents the extension of the algorithm to the important
class of problems characterized by inequality constraints on the state
space. The efficacy of the procedure is demonstrated by a numerical ex-
ample. The problem solved is nonlinear, but admits of a closed form solu-
tion. This makes possible a direct comparison between the solution ob-
tained by the algorithm and the analytic solution.

Problem statement. The general problem we are interested in here
consists of finding, among all admissible controls u u(t) which transfer
the state point from the position x0 to the position xs, the one for which

x(t]) f(x, u, t) dt

takes on the least possible value. The vector x (x1,
to satisfy the vector differential equation

x’) is required

where f (fl, fn), and f0 are assumed to have the smoothness proper-
ties required for the application of the maximum principle [2]. The class
of admissible controls will be taken as the collection of functions u(t)
differentiable on [to, Q]. In addition the trajectory x(t) corresponding to
the control u(t) is constrMned to satisfy p inequMities of the following
form:

GP(x) <= O,G(x) <= O,

where Gi(x), i 1,..., p, are continuously differentiable on the state
space X. In the following we shall assume the existence of a solution to
the constrained optimM control problem.
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Extension of the generalized Newton-Raphson algorithm. The solution
of the constrained problem is reduced, by the introduction of an additional
state variable xn+l, to the solution of a sequence of unconstrained problems.
Each subproblem is then solved by the generalized Newton-Raphson
algorithm and under appropriate conditions the sequence of solutions
converges to the solution of the constrained problem.
We introduce the new state variable xn+l by means of the differential

equation and boundary conditions

n+l fn+l [G(x)]eHI(G1) _[_... + [G(x)]H(G,),

x+(to) O, x+(t) > O,

where the functions H(G) are given by

0 for G.__< 0,Hi(G) =KforG > 0, i 1,.-.,p,K coust. > 0.

We note that fn+l(X) is continuously differentiable with respect to x. The
maximum principle is therefore applicable and implies

as xn+ is not contained ia ny of the f, i 0, n + 1. The ector
(0, Cn+) is the co-state or djoint vector whose existence s a

onzero, bsolutely continuous function is sserted by the mximum prin-
ciple (see [2, p. 19]).
Suppose/e/ to be sequence of positive numbers that converges mono-

tonically to zero. The quantity

e--- {[GI(x)]eHI(G) + + [G’(x)]H’(G’) dt
to

will be regarded s a measure of penetration of the constrai_ts. To each
e there corresponds a constant, bn+, through the solution of the corre-
sponding unconstrained oI)timal control problem. As s-- m, e 0 and
we may expect the corresponding sequence of solutions to approach the
solution to the original conslrained problem.

This approach is directly related to the "penalty function" technique
used by Kelley et al. [3], [4], [5] with the gradient method, and is a general-
ization of a result due to Courant [6], [7]. The question of eottvergenee

and existence of solutions i.s discussed by Butler and Martin [8].
It is convenient to regard the constatt ,n+ aS a parameter of the bomtd-

ary value problem associated with the optimal control problem through
the application of the necessary conditions, i.e., the conditions implied by
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the maximum principle. That is, ,n+l is considered as fixed and the bound-
ary value problem is solved by the generalized Newton-Raphson procedure
[1] with x’+l(tf) e, unspecified. This yields a value for
corresponding to the constant 8"+1. The parameter n+1 is now changed
autom.atieally, according to the distance between e8 and zero, and the
new boundary value problem solved using the previous solution as starting
functions for the new iteration.

Numerical example. The example is a modification of the classical
braehistoehrone problem. We consider a particle, falling for a specified
time tf to, under the influence of a constant gravitational acceleration
g. The particle has a given initial speed x0 and we wish to find the path
that maximizes the final value of the horizontal coordinate, xl(tf), with
the finM values of the vertical coordinate, x(tf), and the speed, x(tf),
unspecified. The path is eonsrained by a given fixed line in the x, x-plane,
the line being chosen such that the unconstrained solution intersects it
(Fig. 1 ).
This particular example was chosen because it has been solved by direct

methods [9] (steepest ascent) and has been considered analytically, with
regard to necessary conditions, in an informative paper by Bryson et al.
[10]. Additionally, it has a known closed form solution [9], [10] making
possible a comparison with the analytic solution as well as between the
two numerical techniques.
The equations of state including the added state eoordittate x4, which

embodies the constraint, are"

a?. _fl xacosu, a?=--f= xasinu,

2 =f gsinu, 2 =f [G(xI,x)]H(G),

[0 for G _<_ 0,G xi, x x ax nt-b), H G I,K for G > 0.

The coordinate to be minimized -t the final time is

tf ft tf
X(tf) f0 dt X COS U dt --xl(tf).

The control variable u is the slope of the path, and boundary conditions
are"

x tox (to) Xo, x’(t‘,) x,, x,,, x (to) o,
x (if) payoff, x:(tf) free, x3(tf) free, x4(tf)

The data for the problem were taken from Dreyfus (see [9, p. 81]) as
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follows"
x(t0) 0ft, x(t0) 0ft, x(to) lft/sec,

to 0sec, tf .7425sec, g 32.20ft/sec,
a .5, b 1.

These data were normalized to obtain"

x(to) O, x(to) O, x(to) .07195,

t0--0, tf 1.720, g 1,

L 6ftunitoflength, .4317sec-unitofime, K 10,

a .5, b .1667.

A straightforward application of the maximum principle yields the follow-
ing nonlinear boundary value problem"

1 fi (X3)2@l[(@lx3)2
2 f2 (X)(2Xa

f [G(x1, x:)].H(G),
1 1 gl 4(2aGH),

g -4(2GH),
@3 g3 (@l)2x3[(@lx3)2 + (@2X3 + 3g)2]--1/2

(x + g)[(x) + (x + g)e]-/,

4 g 0,

with boundary conditions"

xl() 0, x(to) O, x(to) .07195, x4(t0) 0,
(2)

(t) 0,

The adjoint variable (to) has been put equal to one, which scales the
adjoint vector (see [2, p. 22]), and (t) and (t) are zero from the
transversality condition (see [2, p. 50]). The control variable u(t) has
been eliminated by the max H(, x, u, t) condition that implies the

following two relations"

sin u (x + g)[(x) + (x + g)]-/,

cos u (x)[(lx) + (x
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System (1) may be written as

h(y, t),

where y (y,...,yS), h (h hs) and h= h(y, yS, t)
i= 1,...,8.
The generalized Newton-Rphsort algorithm proceeds by solving the

following sequence of linear boundary wlue problems [1]"

(3) k+l J(Yk, t)[yk+l y] + h(y, t), 1, 2,...,

where J(y, t) is the Jacobian matrix of partial derivatives of the h with
respect to the y, i, j 1, 8.
The adjoint variable ,4 is fixed at a nominal value 0, e.g., 0 0, a

starting vector yo(t) is chosen, and the sequence of linear boundary value
problems (3) is solved numerically by the procedure described in detail in
[1], with boundary conditions (2).
The iteration continues until a prescribed metric becomes , where

y+(t) y(t)
i=1 t [to, tf]

ad is a smll positive constant. This results in a nonaegtive vlue for
x (t) e which is a measure of the penetration of the constraint.
The parameter is then adjusted automatically, by a sclr pplic-

tion of the Newton-Rphson lgorithm, s follows"

x_(t)]-[ (t),_]x

where the rate of change of with respect to x4(tz) hs been obtained by
finite difference approximation as shown. Since this recursio formula
contains three idices (s - 1, s, s 1), the value was rbitrarily de-
termined by o Kxo4(t), K 10, after which the recision
formula was used. The iteration ou y is now contiued until is atria
fl. The overall process continues until p , where

p= + x(t) + .
The corresponding iterate is accepted as the solutio and a final check is
made by integrating the nonlinear system (1) with a complete set of initial
conditions obtained from the final iterate.
The following simple linear starting functions yo(t) were chosen"

Yo (t) Xo(t) O, y0 (t) 01(t) 1,

Yo (t) ZoO(t) O, yo6(t) o(t) O,

yo(t) xo(t) Xo + (x? Xo)(t)-t,
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y0 (t) 0a(t) (tan 56)y0a(t),

yo4(t) Xo4(t) =- O, yo (t) /o4(t) =-- O,

where the number x]a, representing an estimate of the speed at the final
time, was put equal to 1, and the starting function 0s(t) corresponds to a
starting control function uo(t), which is constant at an arbitrary value of
56. After four iterations the sequence {yk} converged ( < 10-4) to the
unconstrained solution (see Fig. 1). This solution corresponds to a value
of the parameter 04 0. A new value 14 was obtained automatically and
the iteration on yk continued until the sequence {YI again converged in
the function space metric (y+l, yk). Following a total of 47 iterations,
with 13 shifts of the parameter p,4, the sequence converged to the solution
of the constrained problem with o < 10-4. The results are exhibited in
Fig. 1 where the analytic solution for the contrained problem is represented
by the solid curve. The unconstrained solution and some intermediate
curves, corresponding to intermediate values of 4, are also indicated in
Fig. 1.
We observe that, within the accuracy of our plot, the solution obtained

by the extension of the Newton-Raphson algorithm, and the analytic
solution, are identical. The program is entirely automatic and required
less than 2 minutes of machine time (IBM 7094). The behavior of the
measure of penetration e, with the "penalty" parameter , is shown in
Fig. 2. The optimal trajectory yielded a value for the maximum lateral
range x (t]) of 1, both analytically and computationally.

FIG. 1. State space trajectories
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i0 -2

10--5
4

-,/,

Fro. 2. Constraint penetration e8 versus constraint prmeter 84

Conclusions. The example presented in this paper suggests that the ex-
tension of the generalized Newton-Raphson algorithm, developed herein,
may be useful as an efficient method for obtaining solutions to the class
of nonlinear optimal control problems with inequalities on the state space.
The approach is basically simple, automatic, and appears to be fairly
general since it does not require assumptions as to the number or location
of junction points, i.e., points of contact between the trajectory and the
constraint boundary.
The method does, however, require starting functions. For the example
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considered above, simple uninspired functions sufficed" linear functions
joining the boundary conditions, or constants. The general question con-
cerning the size of the region of convergence remains open and will likely
require further computational experience to clarify.

Acknowledgment. The writer is indebted to Henry J. Kelley, Michael
Falco, and Edward J. Beltrami for helpful discussions and to Gerald E.
Taylor for his skill in adapting the algorithm to the computer.
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MINIMIZATION OF FUNCTIONALS WITH EQUALITY
CONSTRAINTS*

E. K. BLUM
1. Introduction. A very general class of problems in the calculus of

variations can be formulated as problems of Mayer--or equivalently, as
problems of Bolza. As formulated by Bliss [4], the problem of Mayer may
be stated as follows"

Let y y(t) (yl(t), y,(t)) be a vector function of in the real
interval tl _-< __< t2. y is assumed to be a member of some set of "ad-
missible" functions, S. For example, Bliss takes S to consist of all functions
which are piecewise continuously differentiable in [/1, t2] and have values
y(t) in some open region of Rm, m-dimensional Euclidean space. Further,
let

(1) (t,y, 0, i 1 ,n < m,

be a set of differential equations, where the i are assumed to have con-
tinuous third-order derivatives in some suitable (2m + 1)-dimensional
open region R1, and the matrix (O(/Oyj’) is to have rank n in R1. Let

(2) /(tl, y(t), t, y(t2) O, j 1,..., p -<- 2m -t- 2,

be endpoint constraints, where the h" have continuous third-order partial
derivatives in some (2m -- 2)-dimensional open region R in which the
matrix

has rank p. Finally, let

(3)

Oy(h) at2 Oy(t)/

J J(t, y(t), t, y(t))

have continuous third-order partials in the region R. The problem of
Mayer is to find y

_
S which minimizes J while satisfying (1) and (2).

(If J is to be maximized, we minimize -J.)
A wide class of problems in the theory of optimal control may be formu-

lated as variational problems of the following type.
Let x x(t) (x(t), x,(t) and u

be functions of on the interval t _<_ __< t, where x is the "state" function
and u is the "control" function. The control is assumed to be in some
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specified set of admissible controls. For example, u is usually assumed to
be piecewise continuous with values in some region U of Rq. We shall take
U to be an open set. Let

dx(1’)
dt f(x, u)

be a system of n differential equations, where f (fl, fn) and the
f, 1 =< i <_- n, are assumed to have continuous partials ;)f/Oxs nd Of/Ou in
some prescribed open set, F R X Rq. We assume that the control region
U is contained in the projection of F on Rq. Let

(2’) 1(/1, x(ti), t2, X(/2)) O, 1 j p 2n + 2,
be endpoint constraints on the state function, where the hve continuous
first-order prtil derivatives in some open. set R, and the matrix

Ot, Ox(tl) Ote

has rank p. Fin.ally, let

(3’) J J(tl, x(h), t2,

be a function of end-values. We assume J has continuous partials in R..
For each admissible control u, a state function x which satisfies (1’) is
called a "trajectory" corresponding to u. An "optimal" control is one which
has a corresponding trajectory which stisfies the constraints (2’) and
minimizes J. The "optimal control problem" is to find such n optimal
control u and its corresponding trajectory x. The pair (x, u) is an "optimal
solution" of the problem.
The optima] control problem becomes problem of Mayer if we let

y x, i 1, n, and y+ u, 1 j q. Conversely, the problem
of Myer is transformed into the optimal control problem by solving (1)

and setting x y, 1 < i < m, andfor n of the y, say y,..., y,
1 < j < m n. Further, we adjoin to the n differential equa-

tions obtained by solving (1) for y’ the additional equations xS’+. ui,

1 N j N m n. This yields a system of m differential equations for the
m state variables as in (1’). Similarly, (2) and (3) become (2’) and (3’),
respectively.
The equivalence of the problem of Mayer and the optimal control prob-

lem is well-known. Therefore, a necessary condition that (x, u) be a solu-
tion of the optimal control problem as formulated above is given by the
multiplier rule [4]. The derivation of the multiplier rule in [4] and other
sources is based on classical methods of the calculus of variations. It is our
purpose in this paper to present an alternate derivation using the methods
of functional analysis, insofar as possible. Although the main ideas have
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been known for some time (compare, for example, Bolza’s results in [7]
with our Theorem 4), they do not seem to have been applied as they are
here. We believe that the techniques of our proof, being geometrical, are
more readily grasped. Furthermore, they are based on natural generaliza-
tions of the ideas used in establishing the Lagrange multiplier rule of
ordinary calculus. In fact, Theorem 4 below and its proof apply to mini-
mization problems with equality constraints in both the ordinary calculus
and in the calculus of variations. It is also the basis for a new derivation of
the method of steepest descent in problems with equality constraints. In
short, we offer a unifying viewpoint for a large class of problems of minimi-
zation (or maximization) with equality constraints.

2. Analysis in abstract spaces. In this section, we assemble some general
results of abstract analysis based on ideas going back to Fr6chet [10] and
Gteaux [11]. Essentially, we consider the generalization of the differential
calculus to normed linear spaces and, conversely, the application of the
methods of functional analysis to classical analysis. Similar approaches are
taken in [2], [3], [9], [12], [13], [14], [15], [16], [17] and [18], to name but a
few recent works. However, the existing literature does not appear to con-
tain results in a form which can be applied directly to the optimal control
problem formulated in 1. Results which are close to our Theorems 1.-4
below are to be found in [17]. In one respect, the work in [17] is more generM,
since it deals with functionals on a normed linear space, whereas we deal
(ultimately) with a prehilbert space. However, in another respect, im-
portant for the intended application, our result is more general, since we
require differentials of functionals to exist only in finitely open sets rather
than in open sets. Furthermore, our proofs are simpler. For example, they
are based on the classical implicit function theorem for real functions of
several real variables rather than on the implicit function theorem in
abstract spaces. Finally, Theorems 1-4 appear to have just the right amount
of generality for the application to variational and control theory.
Throughout this section, E and E1 will denote normed spaces (usually

over the reals) and f will denote an arbitrary mapping from a subset of
E to El. We denote this, as usual, by "f:E -- El", which leaves the domain
of f as some unspecified subset of E.
DEFINITION 1. Let f:E ---, E be an arbitrary function defined in a

neighborhood of u ff E. If there exists a linear continuous operator,
f’ (u):E -- E, such that for all h in some neighborhood of 0,

f(u -t- h) -f(u) f’(u)h -t- e(u, h),
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then f’ (u)h is the strong differential of f at u with increment h, and f’ (u) is
the strong derivative of f at u.
Remark 1. f’(u)h is an element of El, the result of the linear operator

f’ (u) applied to h. fr (u)h is defined for all h E. For our applications, we
must consider a more general notion of differential. First, we introduce the
concept of a set "finitely open at u". (Compare [16].)
DEFINITION 2. A subset D c E is finitely open at u if for any hi,

h E, n =>- 1, there exists an open set T R such that T contains the
origin and u 4- = th D for all (h, "", t) T. (Equivalently,
there exists (h, h) > 0 such that u + =th D whenever

<
DEFINWIOZ 3. Let f:E -- .El be defined on some finitely open set at u.

If

lim f(u + th) f(u) f(u; h)
I-,0

exists for all h E, it is called the weak differential of f at u with increment
h.
Remark 2. We also have, by the usual definition of the derivative of a

vector function of a scalar t,

f(u h)3-tf(u -4- th) It=o

Remark 3. 6f(u; h) is homogeneous in h. This follows easily from the
definition, since

6f(u; sh) lira au
; -- tsh) f(u) slim au + tsh) f(u) s6f(u; h).

0 tO t8

Remark 4. In the case when f is a real funetionM such that 6f(y; h) exists
and is continuous in y for y in a set finitely open at u, we obtain additivity
of f(u; h) as follows. For any h, h E, choose scalars tl and t. and define

g(h, t) f(u -t- hh + hh).

Observing that

we obtain

Og
or1

Og
Otz

6f(u q- h h -+- t h; h)

f(u nt- h h -t- t h h),

f(u + tlhl + t.h2) -f(u) hf(u; h) + hf(u; h2) + e,
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where e/(tl - t22) 1/2 0 as (h, t2) -- (0, 0) along a ray through the
origin. Taking t t, this yields

limf(U + t(h - h2)) -f(u)
t-o

f(u; h) + f(u; h),

since e/t -- 0 as -- O. The left member is f(u; h -- h2), which establishes
the additivity.
DEFINITION 5. Let f be a function] on D c E, where D is finitely open

at u. Let y D, where D is finitely open t y also. If f(y + - th)
is continuous in (t, t) at the origin in R for all hi, h E,
then f is finitely continuous at y.
DEFINITION 6. Let J and g be functionals on a domain D E. The

set C(g) lY]g(Y) 0} is called a constraint. If there is a neighborhood
N of u C(g) such that J(y) >= J(u) for all y C(g) N ] D,
then u is a relative minimum of J on the constraint C(g). More generally,
if S is any subset of E, u is a relative minimum of J on S if J(y) >= J(u)
for all y S N/3D.
A prehilbert space is a linear space E with an inner product (u, v) de-

fined for all u, v E. The space is normed by taking u 2= (u, u).
Henceforth, we shall assume that E is a prehilbert space. A Hilbert space
is a complete prehilbert spce. It is a well-known result that if g is a bounded
linear functional on a Hilberg spce E, then there is a y E such that
g(h) (y, h) for all h E. Although this result may not hold i general
in a prehilbert space, we shll see that it holds for the cases which interest
us. In particular, since f(u; h) is linear in h, there may exist an element
Vf(u) E such that f(u; h) (Vf(u), h) for M1 h E. If such an ele-
ment exists, we call it the gradient off at u. In this cse, f(u; h) is a bounded
linear functional of h. Note that this holds only at u and nothing can be
said about f(x; h) for x in a neighborhood of u.
THEOREM 1. Let E be a real prehilbert space. Let J and g be real functivnals

on a set D E and let u be a relative minimum of J on the constraint C(g).
Further, let D be finitely open at u, let VJ(y) and Vg(y) exist as finitely
continuous functions of y for all y in a finitely open set at u. Also let Vg(u)

’ O. If ht E is such that (Vg(u), ht) O, then (VJ(u), ht) O.
Proof. For any two scalars h, t define

hx, #ht + kVg(u).

The real function F(h, t) g(u + hx) hs the properties:
1. F(0, 0) 0; F(h, t) continuous in a neighborhood of (0, 0);
2. Fx =-- OF/Oh and F =--- OF/Ot exist as contiruous functions of (h,

in some neighbohood of (0, 0);
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3. F,(A, ) 0 for all (h, g) in some neighborhood of (0, 0). In fact,

Fx(X, g) lim
g(u + h,, .-[- AhVg(u)) g(u + h,,)

(4) 0

g(u + h,, Vg(u)) (Vg(u + hx,), Vg(u))
for all (h, g) in some sufficiently small neighborhood of (0, 0). Similarly,

F,(h, g) (Vg(u .-[- h,,), ht).

Since Vg(u - hx,) is continuous in (h, g) in a neighborhood of (0, 0),
so are Fx (h, g) and F,(h, g). Also.

Fx(0, 0) (Vg(u), Vg(u)) Vg(u)[I O.

Hence, there is a neighborhood of (0, 0) in which Fx(X, g) 0, establish-
ing property 3 above. Note also that

F,(0, 0) (Vg(u), ht) O.

Properties 1 and 3 allow us to invoke the classical implicit function
theorem to obtain
in some neighborhood of g 0. Furthermore, by property 2, G is con-
tinuously differentiable in a neighborhood of g 0 and G’(0) -F,(0,
O)/F, (0, 0) 0. Since G
< 1), it follows that

(5) lira
G() G’(0) 0.

-0

Consider the one-parameter family of vectors

y, u + ght + G(g)Vg(u).

For all g in some neighborhood of g 0,

g(y,) F(G(p,), p,) O.

Since lim,0 G(g) 0, we have lira,_.0 y, u. Now, let

H(,, ) J(u + h,,)
and

(() H(G(), ) J(y,).

We hve as before, Hx(0, 0) (VJ(u), Vg(u)) and H,(0, 0) (VJ(u),

J(y,) --J(u) --() -(0) ’(0) -t-

where e-* 0 as -- 0. Observing that

’(0) Hx(0, 0)G’(0) -t- H,(0, 0)
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and recalling that G(0) G’(0) 0, we obtain

’(0) H,(0, 0) (VJ(u), ht).

Hence,

J(y,) J(u) u[(VJ(u), ht) -+-].

If (VJ(u), ht) a 0, then for all sufficiently small negative u, we
would have J(y,) < J(u), contradicting the hypothesis that u is a rela-
tive minimum of J on C(g). Likewise, if (VJ(u), ht) -a 0, then
for u > 0 and ]ul sufficiently small, we obtain the same contradiction.
Therefore,

(vJ(u), h) 0,

as was to be proven.
As an immediate consequence of Theorem 1, we have the following

statement of the multiplier rule for the case of one constraint.
THEOREM 2. Let J and g be real functionals on a set D in a real prehilbert

space. Let D be finitely open at u, a relative minimum of J on the constraint
C(g). Let VJ(y) and Vg(y) be finitely continuous functions of y in a finitely
open set at u. Also let Vg u O. Then

(6) VJ(u) (VJ(u), Vg(u)) Vg(u).
re(u)II

Let

Proof. Let

M lhl (re(u), ) 0}.

(7) v VJ(u) (VJ(u), Vg(u))
II v(u) II ve().

For anyh M, wehave (v, h) (VJ(u), h) 0byTheorem 1. Also
(v, Vg(u)) 0. Hence, v M and (v, v) 0; that is, v 0 and the
result follows.
Theorems 1 and 2 may be generalized to any finite number of con-

straints.
THEOREM 3. Let J, gl, g be real functionals on a set D in a real

prehilbert space E. Let D be finitely open at u and let u be a relative mini-
mum of J on the intersection =iC(g) of the constraints. Let VJ(y) and
Vg(y), i 1, p, exist as finitely continuous functions of y in a finitely
open set at u. F,nally, suppose the set of gradients {Vg(u), Vg(u)}
is a linearly independent set in E. If ht E is such that

(Vg,(u), h) 0
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for all i 1, p, then

Proof. Let }, (hi,

(vj(u), h) 0.

Ap) be a p-dimensional real vector and define

y,, u + ht-+- h.Vg-(u).

Then define

F(h, g) F(},I,..-

The functions F have the properties"

,, g) g(y,,), i 1,..., p.

F(O, O) g(u) O,

Fi(A, t) =-- OFi lim
gi(yx, -5 A-Vg.(u)) g(yx,)

Oh xo
g,(Yx, Vg(u)) (Vg,(yx,), Vg(u)).

Thus, F](A, ) exists and is continuous in (, ) in a neighborhood of
(0, 0). Similurly,

F,
OF, (Vg,(yx,), ht)

exists and is continuous in such neighborhood.

F,(0, 0) (Vg,(), Vg(u)),

nd the Jcobin mtrix (F(0, 0) hs rank p since the Vg(u) are linearly
independent. By continuity, the mtrix (F(A, )) has rank p for (, ) in
some neighborhood of (0, 0). Also,

F,,(0, 0) (vg,(u), h,) 0

for ull i 1, p.
As in Theorem 1, we invoke the implicit function theorem to obtMn p

functions G() such that F(G(), G(), ) 0 in a neighborhood
of 0, nd G(0) and G’ (0) 0 for i 1, ..., p. As in Theorem 1
we find that lim,0 G()/v G’(O) O. Consider the vectors

y, u + ,h, + G(,)Vg(,).
=1

For all in some neighborhood of v 0,

e,(y,) F,((,), ..., (,), ,) 0.

Since lim,0 G() 0, we have lim,0 y, u.
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Proceeding as in the proof of Theorem 1, we define H(X, t) J(yx,).
We obtain Hx.(0, 0) (VJ(u), Vg..(u)) and H,(0, 0) (VJ(u), ht),
which yields

[(VJ(u), ht) +
The remainder of the proof follows the proof of Theorem 1.
THEOREM 4. Let J, gl, gp be real functionals on a set D in a real

prehilbert space E. Let D be finitely open at u and let u be a relative minimum
of f on the intersection =lC(g). Let VJ(y) and Vg(y), i 1, ..., p, exist
as finitely continuous functions of y in a finitely open set at u. Finally, sup-
pose {Vg(u) i 1,..., p} is a linearly independent set in E. If VJ(u)

O, then there exist unique scalars M, not all zero such that

(s)

Proof. Let

Let (1,

VJ(u) ’’---1 ),Vg(u).

M {h (Vg,(u), h) 0 for all i 1, p}.

),) be the unique solution of the linear system

(9) (Vg(u), Vg.(u))h (Vg(u), VJ(u)),

Define

For anyh M,

p

v VJ(u) Vg(u).

h) (VJ(u), h) 0

by Theorem 3. We also hve for i 1, p,

p

(v, Vgi(u) J(u), Vgi(u) k.(Vg(u), Vg(u) O,

i= 1,...,p.

by (9) above. Thus v M and (v, v) 0, which yields the result.
Remark. The vectors ht such that (Vg(u), ht) 0 form linear sub-

space called the tangent subspace of the constraint C at the point u. The
geometric interpretation of the preceding theorems should be evident.

3. The multiplier rule. We shall now apply the results of 2 to obtain
necessary conditions for a solution of the optimul control problem specified
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by (1’), (2’), and (3’) in 1. As pointed out in 1, this will also yield a new
derivation of the multiplier rule for the problem of Mayer.

Let U be an open set i1 Rq, Euclidean q-space. A control,
T Tu u (t) (ul(t)," ",uq(t)),

is "admissible" on [tl, t2] if it is a piecewise continuous function of in the
interval tl =<- =<- t2 and u(t) U for all in this interval. (The superscript
T denotes the transpose of a matrix.)
The set q of all piecewise continuous functions u(t) defined on an in-

terval [a, b] to R is , linear space. It becomes a prehilbert space if we de-
fine the inner product, (u, v}, of any two functions u, v Cq, where
T T T Tu u (t) (u(t),..., uq(t)) and v v t) (v(t),... vq(t))

(U, Y} --- fa (Ul Yl "-" -" UqYq) dt--- fa UTY dt.

For t and t in [a, b], the set of admissible controls on [t, t] is a subset of
(q, if we take u(t) 0 for outside of [t, t]. We shll take (q as the
underlying prehilbert space in the ensuing discussion.

Suppose that the initial values x(ll) and the initial time t are fixed.
Suppose further that there exists an dmissible control u u(t) such
that (1’) has a solution x(t) in the interval t <= <- t, with initial values
x(t). The points (x(t), u(t)) lie in the open region F in which f(x, u) has
continuous partials. Consider the equations

dx(1’)
dt -f(x, u + sh),

where h h(t) is an arbitrary admissible control on [h, t] and s is a
scalar. From the theory of ordinary differential equations (see [8, p. 29],
for example), it is known that (1’) has a solution in [tl, t2] for all suffi-
ciently small Is I. In fact, for ]c arbitrary admissible controls, hi, h
the equatio

dz k

dt
f(x, u - s h),

i1

has a solution in [t, t] for = s suffciently small. In all cases, the
initial value is taken to be x(t).
We shall designate the solution of (1’) by x(t, s) when h is being held

fixed in the discussion. The final values x(t, s) are functionals depending
on the control, y u - sh. In the general case, we have solutions x(t,
sl, s) with final values depending on y u - = sh. Thus,
the final values of the solutions of (1’) with initial values x(t) are func-
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tions defined on a domain, D c q, which is finitely open at u for any
u D. We express this by writing x(t2) x2(y) for y D. It follows
that the functions - in (2’) of 1 can also be regarded as functionals on D.
Let us define

Similarly,

gj(y) ,.,(tl, x(tl), t x.(y) ), j= 1,...,p.

J(y) J(tl x(t), t, x(y) ).

If u minimizes J on the intersection I =C(g) of the constraints (see
Definition 5), then

J(y) J(u)

for all y D f’l I ffl N,, where N, is some neighborhood of u. If VJ(y)
and Vgj(y) exist and satisfy the hypotheses of Theorem 4, then we may
apply (8) above to derive the multiplier rule. Thus, the derivation from
this point on consists of a calculation of the gradients of J and g-. We now
carry out this calculation using the well-known technique of the adjoint
equation.

In the following, let h h(t) be an arbitrary but fixed function ir q.
Let u u(t) be an optimal control on [t, t2]. For all s sufficiently small,
u + sh is an admissible control and, as explained above, has a correspond-
ing trajectory x(t, s) in [t, t.]. For s 0, the corresponding trajectory is
the optimal trajectory x x(t, 0). Using the notation explained above,
we have x(u + sh) x(t, s). Now, let (OJ/Ox2).o denote the n X 1
matrix of partial derivatives, OJ/Oxj, of J(t, x(h), t2, x(t2)) with
respect to the variables x(t2), j 1,..., n, and evaluated for x(t2)

x(t2, O) x2(u), i.e., at the final value of the optimal trajectory. It is
assumed that the point (h, x(t), t2, x(h, 0)) lies in the region R in
which J and - have continuous fist-order partials. Since R is open, and
since x(h, s) is continuous in the parameter s (see [8] gain), it follows
that the points Q" (t, x(tl), t2, x(t, s)) are also in R for sufficiently
small s. Hence, J(Q,) nd .(Q) are defined for s sufficiently small and
J and have continuous first-order partials at such Q. In this discussion,
t, x(tl), and t2 are not being varied. Therefore, we assume that p _<_. n
and that the matrix (O/Ox(t)) has rank p.
Again using a superscript T to denote the transpose of a matrix, we have

(see Remark 2, Definition 3),

(10) J(u; h) dJ(u q- sh)
=o

(OJrx(u; h)
ds \Ox/o

Now, let Of/Ou denote the n X q matrix (Of/Ou) and Of/Ox the n X n
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matrix (Of/Oxj), both evaluated at a point Ft" (X(t, 8), U -- 8h), where
x(t, s) is the trajectory corresponding to u + sh. Note that gt [’ for
tl _-< __< t2, so that f has continuous first-order partials at Pt. Writing
x(t, s) (xl(t, s),..., xn(t, s)), we let Ox/Os be the n 1 matrix of
partials (Ox/Os). Once again, by appeal to results in the theory of or-
dinary differential equations (e.g., see [19, p. 72]), we can assert the exist-
ence of the Oz/Os for s sufficiently small, and for any such s one obtains
the variational equations

d (Ox) OfhOfOx-t o Ox

Since

itx(u; h) dx(u + sh)
d8 =0

Ox(t2, s)]--8 s=0

it follows that x2(u; h) exists and is the final value of a solution of the
nth order system,

(11)
dt

where the zero subscripts indicate that the prtials are to be evaluated at
the points (x(t, 0), u(t)) of the optimal solution. The initial vlues v(tl)
are to be taken as zero when x(tl) is not to be vried. Otherwise, v(tl)
will be arbitrary.
The adjoint equations of (11) are given by

dy (Of r

(12)
dt \Ox/o

y"

r(Of/Ou)oh for any solutions y of (12) and v of (11).Hence, d(yrv)/dt y
Integration yields

()(13) yr(t2)v(t yr Of hdt + yr(tl)v(t)U
If we tke for y the solution J(t) of (12) hving finul vulues J(t)

(OJ/Ox)o, then since v(t2) Ox(u; h), it follows from (10) and (13)
that

(14) 6J(u; h) jr Of hdt + Jr(tl)v(t).

The function Jr(Of/Ou)o is piecewise continuous on [tl, t], since Jr is
solution of (12). Thus, Jr(Of/Ou)o q. Since tl, x(tl), nd t are not
being vuried, we must take v(tl) 0. Using the inner product notation,
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(14) can be written as J(u; h) (Jr(Of/Ou)o, h). This shows that

(15) VJ(u)= j(Of)- o’
that is, the gradient of J exists at u and may actually be computed by
solving (12) for Jr(t), integrating backward from t. to tl with starting
values (OJ/Ox2)o. (Since u is piecewise continuous in [t, t], so is (Of/Ox)o,
and a piecewise differentiable solution of (12) exists in [t, t] for all staring
values.
The gradient of each g is obtained similarly. Thus,

(16) Vg(u) eL 0’

where (t) is the solution of (12) having final values (t)
OX)o. Finally, as noted earlier, for any admissible controls h, h
and all (s,..., s) with ]s < , the control u + sh, is
admissible and has a corresponding trajectory x(t, s,..., s) which is
continuous in (s, s). Hence, (Of/Ox) and (Of/Ou) evaluated at the
points (x(t, s, ..., s), u + sh) are continuous functions of
(s, s) in some neighborhood of the origin in R Consequently,
any solution of dy/dt --(Of/Ox)ry is continuous in the parameters
s, s in this neighborhood. Thus,

exists and is eonginuous in he , which implies hag Vgi exisgs and is finitely
continuous in a finitely open se a , i.e., he se of all controls of he form
+ h for arbitrary h,.--, he dq and 1 < d, where

d > 0 depends on he h. This applies go V as well.
Now, consider ghe gradiengs V()}. If ghey are nog linearly independ-

ent, hen here are scalar mulgipliers M, X no all ero and such ha
i XiVi() 0. If ghe gradiengs are linearly independent, ghen by
Theorem , here are mulgipliers M, X nog all ero such ha VJ()
iQ XiVgi(). Bogh eases may be subsumed under one general prin-

ciple by asserting he existence of scalars M, "-, X no all ero and
scalar l0 such

() 0vJ() + x() 0,

where l 1 if ghe {Vgi()} are linearly independeng and l0 0 if ghey
are no.
Applying his o he control problem a hand, we obtain ghe necessary
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conditions

j- 1,... p,

with final values

(22) l(t2) --lo = \Ox2]o"
Equation (19a) becomes

(23) /’r(u)=0"0
The components /x(t), i-= 1, n, of lx are the multipliers of Bliss’
formulation of the multiplier rule (see [4, p. 202]) and (21) and (23) are
the Euler-Lagrange equations. To show this, we refer again to [4, p. 203]
and the statement of the problem of Mayer in 1 of this paper.

Following Bliss, we introduce the function

yP yPF(t, y, l(t)(t, y, ),
jl

where the . are the functions in (1). Let F be the n X 1 matrix of par-
rials (OF/Oy), i 1, n. Similarly, Fy, is the n X 1 matrix (OF/Oy’).
The Euler-Lagrange equations may be written in vector form s dF,,/dt

F/

(19e) (t)=
\Ox2/o"

Equations (19b) and (19d) can be combined into one set of differential
equations as follows. Let

p

(20) (t) -0J(t) (t).

From (19b)-(19e) it follows that l is the solution of

dt kOx/o
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In the control problem, the 4b" have the form

% :--f(xl, "",x,,,ul,’",uq), j-- 1,

To transform this into a Mayer problem, we set y x, i 1,
and yn+ uk, k 1, q. Hence, for i 1, n.

OF

_
l OfJ OF OF

li
Oyi = OXi Oyi 02i

and the Euler-Lagrange equations are

(24)
dt =1 Ox--

Fori =n-t-k,k 1,...,q,

OF
l Of OF

and the Euler-Lagrange equations are

(25) .= l Of O.

H(l, x, u) lfi(x, u) l
’=1

where x, u, and l are regarded as independent vector variables of dimension
n, q, and n, respectively. We have

OH ofl i 1,
Oui = Ou

,q.

by (20) and (19e). This contradicts the assumption that the matrix
(0,,i/0x.)o has rank p.
Remark. Let us introduce the (Hamiltonian) function

Comparing (24), (25), with (21), (23), we see that they are one and the
same system of equations. Furthermore, (22) for the final values are the
transversality conditions obtained by Bliss [4, (74.9), p. 202] by setting
the coefficient of dy equal to zero, i 1, n. The constants e, of
Bliss correspond to our X and the multipliers 10, l, l of Bliss are our
10, l, i 1, -.., n. As in Bliss, it is clear that lo, l(t) do not vanish
simultaneously at any point in [6, t.]. If l0 1, this is immediate. If
l0 0, then l() 0 for all 1 =< i =< n implies that l(t) 0 for all
in [t, t:], since l is the unique solution of the homogeneous linear equa-

tion (21). But then

0 (t) x (t) x= = kOx/o
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If (x(t), u(t)) is an optimal solution of the optimal control problem and
lx(t) is the corresponding solution of (21) given by (20), then (19a), or
rather its vector form (23), becomes

OH (lx(t), x(t), u(t)) O, tl <= <_ t2.
Ou

This is a necessary condition for H(lx(t), x(t), u) to attain a relative maxi-
mum with respect to u at the point u u(t). Hence we obtain in this
case (i.e., when the control region U is open) conditions which are a

consequence of the maximum principle of Pontryagin, without appeal to
that principle.

4. Variation of endpoints and initial conditions. The results of the
previous section are readily extended to the case where tl, x(tl), t2, and
x(t) are varied simultaneously. To do this, the underlying prehilbert
space must be chosen to be E , N R M R in which an arbitrary
element is of the form e (u(t), v, t) with u u(t) , Vl R,
and t (t, t) R. The inner product of two elements e, e’ E is
defined as

.b
T T(e, e’} urn dt + v v + t t12.

Thus, E is direct sum of q, the "control spce", R, the "initil-vlue
spce", R, the "endpoints space". If, for n nrbitrry initiul point t,
an arbitrary final point t, n urbitrry set of initiul vlucs X(ti) R,
nnd n nrbitrary admissible control u, (1’) has solution in [h, t], then
the final vlues x(t) can be regarded as a function on E to R’. Writing
e (u, x(t), h), we can denote this function by x(e), s in the previous
section. Clearly, J and the are functionls on E and the results of 3
cn be extended in a very nturl why to pply to this more gener] space.
For example, (10) becomes

where now we are considering J(e + sf with f (h(t), dx, dt) E.
Similnrly, x(t, s) is the trajectory corresponding to e + s nd (x(t, 0), e)
is the optimal solution. The remarks on finitely open sets upply to e nnd
x(t, s). As before, we obtuin (13) except that now

dXl.as =o ds
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Hence,

The zero subscript again means that all partials are evaluated at the op-
timum point e (u(t), v, rx), where v are the optimum initial values
and (r, 2) are the optimum end points. The gradient of J is given
by

<15’) VJ(u)= (J,r(O) j,(v)+(OJ)
where &(t) is again the solution of (12) with values
An nnlogous formula holds for Vgy(u) with Cy replacing J. The remainder
of 3 carries over mutntis mutnndis to the present case. In prticulnr,
we obtain the additional transverslity conditions

Equation (26) arises from the variation of x(tl). Equations (27) and (28)
arise from the variation of h and t2, respectively.

5. Conclusions. A different approach for obtaining the fundamental
general necessary conditions for a solution of the problem of Mayer has
been presented in the context of an optimal control problem. The multi-
plier rule, which sums up these necessary conditions, has been derived
using some general theorems from functional analysis, which serves to
unify the treatment of minimization problems with constraints. In a sequel
to this paper, it will be shown how these theorems and techniques can be
applied to steepest descent methods.
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A GENERAL THEORY OF MINIMUM-FUEL SPACE TRAJECTORIES*
LUCIEN W. NEUSTADT

1. Introduction. This paper is concerned with the trajectories of vehicles
moving in free space, i.e., of vehicles that are subject only to gravitational
and propulsive forces. The following problem is fundamental in the control
of such trajectories" given the vehicle position, velocity, and mass at a
specified initial time, find a propulsion program that brings the vehicle to
a prescribed terminal state (in a terminal time which may be free or fixed)
with a minimum expenditure of fuel. Such a program will be called optimal.
The mathematical treatment of this problem depends very strongly on

the model used for the fuel expenditure. Ia the case of a rocket engine,
an excellent approximation is that the rate of fuel consumption is propor-
tional to the magnitude of the thrust vector, and this article will deal
exclusively with this representation. For low thrust engines, the rate of
fuel consumption is measured by the square of the thrust vector magni-
tude. Such a model permits a much simpler analysis, and, for the case of
linear equations of motion, this problem has been widely studied (e.g.,
by Billik [13], Meditch [14], and the author [15]).
We shall assume throughout that no constraints are imposed on the

vehicle position and velocity. If this assumption results in a trajectory for
which the assumed model for the forces acting on the vehicle is incorrect
(e.g., if the trajectory intersects a planetary atmosphere), or if the tra-
jectory violates obvious physical constraints (e.g., if the vehicle must pass
through the interior of the sun or the earth), the analysis developed in
this article is clearly inapplicable. Instead, it will then be necessary to take
the additional forces into account, and/or consider a problem with "re-
stricted phase coordinates". However, there is good reason to expect that
in many problems arising in current applications, the optimal trajectories
will not be physically inconsistent with the model we use.

Further, except for a brief discussion in 9, we shall always suppose that
there is no constraint on the allowed value of the thrust vector. Minimum-
fuel thrust programs in the absence of any such constraints generally
consist of a finite number of iml?ulses. Although impulsive corrections can
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never be realized by an actual rocket engine, a knowledge of the optimum
impulses will often make it possible to compute the optimum, or near
optimum, thrust program in the presence of the thrust amplitude limits
which must exist in actual engines.
The problem described above is clearly a variational one. In order

to permit impulses, and yet have a precise mathematical formulation,
it is necessary to place the problem in a somewhat unorthodox framework,
and thereby arrive at a nonclassical variational problem. This develop-
ment is carried out in 2. In 8 we show that this framework is a reasonable
one by proving both an existence theorem for solutions of the resultant
variational problem and an approximation theorem which states that
solutions of the unorthodox variational problem can be approximated by
conventional thrust programs to any desired degree of accuracy.
In 3-6, necessary conditions that an optimum thrust program and

associated traiectory must satisfy are derived. Many of these conditions
have been previously obtained by examining the necessary conditions in
the presence of a thrust amplitude constraint, and then passing to the limit
formally as the maximum allowed amplitude tends to (see, e.g., Lawden
[1]). In 9 we show that this limiting argument is, in a sense, justified,
and also prove an existence theorem for optimum trajectories in the presence
of thrust amplitude constraints.
The necessary conditions derived in the sequel give rise to a formidable

two-point boundary value problem, with some additional unknown quan-
tities to be determined (see the remarks at the end of 5), if it is desired to
actually obtain an optimal trajectory. Satisfactory computational methods
for handling such problems are only now beginning to be developed.
Some specific examples of contemporary interest are discussed in 7.
Ewing [2] adopted a viewpoint very similar to the one taken in this paper

in his investigation of the same problem for the particular case where the
gravitational field in which the vehicle moves is uniform. The case where
the grvittionM field is linear in the spce coordinates has been previously
treated by the author [3]. While preparing this manuscript, it has come to
the author’s attention that the problem discussed in this paper has also
recently been studied, but from slightly different viewpoint (basically a
change of independent variable to allow "impulses"), by Rishel [4] and
Warga [16].

2. Problem formulation. The motion of a vehicle that is subject only to
gravitational and propulsive forces can be described by the following
differential equations-

ii Gi(rl, r., r3, t) -- F(t)
M(t)

i 1, 2, 3,
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where rl, r2, and r3 are the coordinates of the vehicle center of gravity in
some inertial, Cartesian coordinate system; G1, G2, and G3 are the com-
ponents of the vehicle acceleration due to the action of the gravitational
force field; F1, F, and F are the components of the vehicle’s thrust vec-
tor; and M is the total vehicle mass, including fuel. Denoting the vectors
(r, r, r), (G, G, G) and (F1, F2, F) by r, G, and F, respectively, we
may write down the single vector differential equation

(t)(2.1) (r, t) + M(t)

The rate of change of mass is the negative of the fuel expenditure rate
and, for a single rocket engine, is given by

(2.2) _]lr’ll
glsp

where denotes the Euclidean norm, and g and Is, (the nominal accelera-
tion due to gravity at the earth’s surface and the specific impulse of the
fuel, respectively) will be assumed to be known positive constants. We
denote (gIs,) by A.
We shall also suppose that G(., is a continuous, bounded function

from E, X E tO E (E denotes Euclidean m-spce) possessing continuous
bounded first partial derivatives with respect to all of its arguments. This
assumption is consistent with the conventional models of gravitational
fields.
Throughout this pper we shall assume that an initial time to (without

loss of generality, and for ease of notation, we shall set t0=0) and initial
values for (2.1) and (2.2) have been given" M(0) M0>0, r(0) to,
2(0) v0. If F(. is a summable function from [0, to E satisfying the
inequality

f0 IIF(t)dt < AMo,

then it follows from standard existence theorems that (2.1) and (2.2) have
a unique solution for 0 =< < o that satisfies the above initial conditions.

By a solution of (2.2) we here mean un absolutely continuous function M(.)

that satisfies (2.2) for almost all > 0. The inequality F dt < AMo implies

that M(t) > 0 for some positive constant r0 and all > 0. Physically, the first
inequality signifies that the rocket cannot provide thrust once the fuel has been
consumed. By a solution of (2.1) we mean a function r(.), whose time derivative
2(- exists for all > 0, with 2(. absolutely continuous, that satisfies (2.1) for almost
all > 0.
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This solution will be denoted by r(t; F)M(t; F); 2(t; F) denotes the time
derivative of r(t; F).

Finally, we shll suppose that there are given functions h(- , from
E E [0, to E, where i 1, and _-< 6, with the following
two properties" (1) The h are continuous and have continuous first partial
derivatives with respect to all of their arguments. (2) If

H(t) l(x,y):x E,y E.,h(x,y,t) 0 for i= 1, -.-,},

then H(t) is n smooth mnifold in .E for ech _->_ 0. For ech > 0, let
y({) denote the class of all summable futwtions 5:(. from [0, {] to E
that satisfy the relations

f0 F(t)II dt < AMo

and h(r(; F), f(; F), ) 0 for i 1, -.., ,. Physically speaking,
() consists of all thrust programs that "transfer" the vehicle from the
position r0 and velocity v0 at 0 to a new state (at the time ) that
satisfies the boundary conditions h(r, f, ) 0, i 1, ,.

In the sequel, we shall consider two variational problems. The first, the
fixed terminal time problem, consists in finding, for a given tl > 0, an element
(.) (tl) such that M(t; ) => M(t; F) for every F (t). The
second, the variable terminal time problem, consists in finding a time t 0
and an element (. (ti) such that M(tl ) M(t; F) for every
pair (t, F) with > 0 and F :(t). In concrete terms, the basic problem
is to find a thrust program that, for the given initial values, achieves
prescribed boundary conditions, and that, in so doing, maximizes the
terminal mass.

If 6 and H(t) consists of a single point for each t, we shall say that
the variational problem is a fixed endpoint problem; if < 6, the problem
will be called a variable endpoint problem.

Let us now consider variational problems that are derived from, and
equivalent to, the above problems. Namely, replace (2.1) and (2.2) by
the equations

(e, t),
(2.3)

z-u(t),

where z, , G, and u re 3-vectors, G(. is the same function that ppears
in (2.1), nd u(. is assumed to be an absolutely continuous, bounded
function from [0, o) to E. We shll consider solutions z(.), (.) of
(2.3) that stisfy the initial conditions z(0) v0 and (0) r0. For a
given bounded, bsolutely continuous function w(. from [0, to E,
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we shall denote the solution of (2.3) with u(-) w(. that satisfies the
given initial conditions (it is easily seen that this solution exists and is
unique for 0 -< <: by z(t; w), e(t; w). We shall also say that t)(t; w)
is the trajectory that corresponds to w.

For every > 0, we denote by () the class of absolutely continuous
functions w(. from [0, ] to E for which the relations w(0) 0 and
h(e(; w), z(; w) + w(), ) 0 for i 1, are satisfied.
Now the deried fixed terminal time problem consists in finding, for a

given t > 0, an element fi(-) (t) such that

dfi(t)
dt <

for every u (t); the derived wrible terminM time problem consists in
finding time t > 0 nd un element fi(-) (t) such that

tl :dfi(t)dt dt =< du(t)dt dt

for every pair (, u) with v > 0 nd u (). The reason for introducing
the derived problem will become clear in what follows.
We shall show that the original and derived variational problems are equiva-

lent. Namely, we shall exhibit a mapping that, for each t > 0, is one-to-
one from ff(t) onto (t) (if we identify elements in ff(t) that differ only
on a set of measure zero), and shall prove that F ff(t) is solution of
the originul problem if nnd only if (F) is a solution of the derived problem
(whether the problem is fixed or variable terminal time).
Define the mapping as follows. If F(. ff(t), let u(. (F(. )) be

the absolutely continuous function from [0, t] to E that is given by

(2.4) u(t)
M(s; F ds, 0

We shll show that is one-to-one from (t) onto (t), nd that-where F(. (u(. for u (t), is defined by

(2.5) F(t) exp {,(t; u)} du(t)
dt

0 t,

1 t du(s)
ds+lnMo, 0 < <(2.6) p(t; u) -] ds

Note that F(t) is defined by (2.5) or almost ll [0, t], since n
solutely contimmus function hs a derivative almost everywhere. At points
where du/dt does not exist, F(t) muy be deflated arbitrarily. Since du/dt
is summuble, the integrM in (2.6) is finite.
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Consider (2.3) with u (b(F), where F :(tl). It is clear that (- ;u)
is absolutely continuous in [0, t], and that, .e. in [0, t],

F(t)(2.7) ;(t; u) G(e(t; u), t) -t- M(t; F)

Since

(2.8) e(o; u) r0, b(0; u) z(0; u) + u(0) v0,

it follows that (replacing u by ,I,(F)), for all [0, tl],

(2.9) e(t;(F)) r(t;F), z(t;(F)) --}- (I,(F) (t) i’(t;F).

Hence, (F) (tl) by definition of ff(t) and (tl), or (ff(t)) (t).
Also (by (2.2), (2.4) and (2.6)), for all [0, tl], we have that

(2.10) M(t;F) exp l(t;(F))}.

Let us show that q,((tl)) ff(t). Thus, let F q,(u), whereu (tl).
It follows from (2.5) und (2.6) that exp {t(" ;u)} is bsolutely continuous
in [0, t], that exp {t(0; u)} M0 and that, a.e. in [0, t),

(2.11) d_. [exp {t(t; u)}] --A
dt

so that J0 F(t)II dt < AMo, nd (see (2.2)), for all [0, tl],

(2.12) exp {it(t; u)} M(t; xp(u)).

It is clear from (2.3) that }(t; u) is absolutely continuous in [0, t]. Also
(see (2.3), (2.5) nd (2.12)), e(t; u) stisfies (2.7) a.e. in [0, t]. By tile
definition of (tl), u(0) 0, so that relations (2.8) are satisfied. Hence,
for 11

(2.13) e(t; u) r(t; q,(u)), z(t; u) -t-- u(t) f(t; xp(u)),

from which it follows that F :(t). Now the relation - I, is con-
sequence of (2.2), (2.4)-(2.6), and (2.12), nd it only remains to show
that I, maps ll of the solutions of the original variational problem onto
ll of the solutions of the derived problem. But it is a consequence of (2.6)
nd (2.12) that if ui (ti), i 1, 2, then M(t I’(ul)) > M(t q’(u))
if nd only if

tl t2

nd this immediately implies the desired result.
Note that (2.9), (2.12), nd (2.13) describe tile correspondence be-
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tween solutions of (2.1) and (2.2) and solutions of (2.3)when u and
T F correspond under the mappings (I) and

If u(. is an absolutely continuous function from [0, tl] to E3, then

(2.14) fotll ’du(t)dt dt STV u,

where STV u, the strong total variation of u, is defined (see [5, p. 59]) as
follows"

STV u
i=l

with the supremum taken over all finite partitions 0 r0 < rl <
( z h of [0, hi. For scalar-valued functions (where STV reduces to the
totM writion), relation (2.14) is well-known. The proof of (2.14) (see,
e.g., [6, p. 209]) carries over from the scalar-valued to the vector-valued
case with only minor modification..

Thus, the original fixed terminal time problem is equivalent to the prob-
lem of finding, for a given t ) 0, an element fi (h) such that

(2.15) STV fi inf STVu;
uEOo(tl)

and the variable terminal time problem is equivalent to that of finding
number h > 0 and an element fi e(h) such that

(2.16) STV[0,tll fi inf STV[0,t] U,
uEg(t)
t0

where STV[0,t] denotes the strong total variation over the interval [0, t].
Unfortunately, there is, in general, no element fi (t) that achieves

the infimum in the right-hand side of (2.15) or of (2.16). To circumvent
this difficulty, we shall embed the sets (t) in larger sets ae(t) possessing
the following two properties: (1) If u(. is any element of ae(t), then there
exist functions u(. (t), n 1, 2, such that u(s) --+ u(s) as
n -- for all s [0, t], and STV u -- STV u as n-/ (see Theorem 4 in
8). (2) There is an element fi (t) such that

STV[0,t] fi inf STV[0,t]u
uae(t)

(see Theorem 3 in 8). Consequently,

inf STV[0,t]tl inf STV[0,t]tl.
u(t) u3e(t)

For each , 0 < < , we define ({) as follows. Let

63([) {u(-)’u from [0, ] to Ea and continuous from the right in

(0, [), u(0) 0, STV0,] u < }.
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For every w (t-), (2.3) with u w has a unique solution in [0, ] that
satisfies the initial conditions z(0) v0,0(0) r0. We shall also denote
this solution by z(t; w), 0(t; w). Then, for each > 0, let

c() {w(.):w (), h((; w), z(; w) + w(), ) 0
(2.17)

for i 1, v}.

It is obvious that () 3C() (g().
We shall denote by (g( the set of all functions from [0, to E3

whose restrictions on [0, ], for every > 0, belong to (g().
We shall henceforth be concerned with the extended variational problems

defined as follows.
The extended variable terminal time problem consists in finding a number

t O < t < and an element fi 3C( t) such that

STV0,tfi inf STV[0,t]tl.
uE3C(t)
t0

The extended fixed terminal time problem, is analogously defined.
3-6 arc devoted to the derivation of necessary conditions tha solu-

tions of the extended variational problems must satisfy. In 5, we con-
sider the variable terminal time problem, ad in 6, the fixed terminal time
problem.

3. Variational equations. In this section, tl iS t.n arbitrary fixed positive
number and fi(.) is art rbitrry fixed element of (g(t). Denote 0(t; fi)
nnd z(t; fi), for 0 -< <- h, by O(t) nd (t), respectively. Let A(. denote
the continuous mtrix-wlued funct.ion on [0, t] whose i,jth element
A. is given by

A.(t) OG(O($), t)
Or

i,j 1,2,3; 0 =<. t__< t.

We shrill also use the notatiol.t

(3.1) A(t) 0G(0(t), t)
0 < < tOr

For every function u(. 63(t), let tiz(- u) and 80(" u) denote the

If w(.)- 65 (), w has at m()st a deumerable umber of points of discotinuity,
a,d hc discontinuities of w arc of th.e first kind. By a solution of (2.3), with
u(t) w(t), we here mean a co..timously differentiable function z(.) that satisfies
the first equation everywhere, and an absolutely continuous function )(-) that
satisfies the second equation at all points of continuity of w(.).
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absolutely continuous functions from [0,/1] tO E: that satisfy the equations

d_ [t;z(t; u)] A(t)tic)(t; u)dt

_d_ [a,(t; u)] z(t; u) + u(t) (t)
dt

almost everywhere in [0, 6], and assume the initial values

(3.3) ,z(O; u) ,e(O; u) O.

We shall refer to (3.2) as the variational equations associated with.
fi(t). Since these equations are linear, their solution is given by the well-
known variations of parameters formula, which here takes the form

(Z([; 11) f [21(t) 71(8) +
(3.4)

u) -f [X(t)I?(s) "-I- X(t)I?(s)][u(s) fi(s)] ds,
J0

where the 3 X 3 mtttrices X(t) and Y:(t), i 1 or 2, satisfy the differential
equations

J:(t) A(t)X(t), ,(t)= Y(t)A(t),

0-< =< 6, i= 1 or 2,

and the initial conditions

(3.6)
XI(0) .,2(0) -?1(0) Y(0) I,

2(0) X(0)= Y(0)= I2:(0)= 0,

I being the identity matrix. The matrices X, Y; also satisfy the following
identity"

(3.7) 0 =< ..<= 6.
\l(t) 22(t) I"2 (t) Y(t)

In conventional physical models of gravitational fields, the function
G(. t), for every fixed t, is the gradient of a twice continuously differen-
tiable scalar-valued function on Ea. Under this hypothesis, A(t) is sym-
metric for every t, 0 -< -< tl, in which case (3.5) and (3.6) imply that
Y(t) X,r(t) and Y(t) X’(t) for 0 _-< -< 6. This computat,ionally
useful result, which is known as Schmidt’s theorem, but which is apparently
originally due to Siegel [7, p. 14], was brought to my attention by O. K.
Smith.
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Integrating (3.4) by parts, using (3.7) and the fact that u(0) fi(0)
0, we obtain

(t; u) fo [(t) Y(s) + A(t) Y(s)] d[u() (s)l

(.S) u(t) + (t),

o(t; u) fo [X(t)Y(s) + X(t)Y(s)] d[u(s) fi(s)],

the integrals in (3.8) being in the sense of Stieltjes.
For every u(-) (B(t) and real number a, let 6x(u, a) be the element

E )< E X E given by

x(u, ,) (0(t ;u),
(3.9)

z(t ;u) + u(t) (t),

and let

(3.10) (o0 /ix(fi, 0) (0, 0, STV fi).

Now define the set W in E X E X E as follows

(3.11) W {ix(u, a)’u (B(t), a _>- 0}.

Clearly, (o0 W.
Since, for every u and w in (B(tl) and real number 3, we have

(3.12) STV(u + w) -< STV u + STV w, STV(Bu) 131STV u,

it follows at once that W is convex.
The set W is analogous to the cone of attainability described in [8,

Chap. 2], and is also patterned closely after the convex set of va,’iations

introduced by Warga in [9, III].
Let a be an arbitrary nonzero row vector in Ev. If

where a. E, n E, and vv E, let p(t; n) for 0 =< =< t, be the row
vector defined by

p(t; n) [[] (n)Y(t), (n) nX(t) + n(t),
(3.13) i=l

i= lor2.

It follows at once from (3.7) and (3.13) that

(3.14) p(t. ;,) ,, (t ;n)

If we consider p(. n) to be a function from [0, t] to E (for, fixed),
we conclude, by virtue of (3.5) and (3.13), that p(. n) is twice continuously
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(3.18)

and

differentiable and that

(3.15) ii(t; ,) p(t; n)A(t), 0 _-< _-< ti.

LEMMA 1. If there is a nonzero vector fi (1, "", ) E such that
fi x o for all x W, then O.

Proof. The hypothesis of the lemma, together with the definiioas of W,
0, nnd p(t; fi) (see (3.8)-(3.11) nd (3.13)) imply that, for every
u (ti),

tl tl

(3.16) p(t;) du(t) + STVu " p(t;fi) dfi(t) + .STVfi.

We first show that 0. Suppose the contrary. Then, (3.16) tokes the
form

tl tl

(3.17) p(t; a) du p(t; a)dfi.

Since (3.17) must hold for every u {(t), it follows that p(t; ) 0 in
[0, t,]. Hence, (t; fi) 0. In particular, p(0; a) (0; ) 0, i.e., (see
(3.6) and (3.13)) l(fi) {(fi) 0. But this implies tha (see (3.7)
and (3.13)) (,, ) 0, i.e., fi 0, and this contradiction shows that
97#0.
By hypothesis, fi.x(fi, 1) ’)0, so that (see (3.9)-(3.11)) 0.

Since 9 0, 9r < 0.
LnMMA 2. Suppose that fi( O. If there is a vector ( , ) E7

with -1 such that fi.x fi’o0 for all x W, then

Ott

tl

(3.19) f0 p(t; fi) dfi(t) STVE0.t,1fi.

Proof. Let t max0_<t_<t p(t; fi)II, and let r [0, ti] be such that
p(r; ) 2. Define (. < (t,) as follows:

for 0 < < r,(t) [p(; ] or 5 5 ti,

(n obvious modification must be made if 0), where K 0 is rbitrary.
Then

tl

(.2o) p(t; ) (t) K u.
As in the proof of Lemma 1, we can show that (3.16) is satisfied for every
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so that

u C s(tl) and, in particular, for u gr. Since STV gr K, we conclude
that

tl

(3.21) f0 p(t;fi) d*-- STVq K(a- 1) _-<f0 p(t;fi) dfi- STVfi.

But (3.21) must hold for every K > 0, which implies that 1.
It is easily verified that

p(t;fi) dfi(t) N max p(t;fi) I1] STVfi USTVfi,
OtStl

(3.22) f0 p(t;fi) dfi-- STVfi -< (]- 1) STVfi =< 0o

But (3.16), with u 0, gives rise to the inequality
tl

(3.23) f0 p (t; fi) dfi STV fi _>_ 0.

Combining (3.22) and (3.23), we obtain (3.19).
If t2 <: 1, it follows from (3.19) and (3.22) that STV fi 0, i.e., fi 0.

This contradiction shows that 2 1, i.e., (3.18) holds. This completes
the proof of Lemma 2.
LEMMA 3. The interior of W is not empty.
Pro. Since W is convex, it is sufficient to show that W does not belong

to ay flat in E7 of dimension less than seven. Suppose the contrary.
Then thcre is a nonzero vector fi (, 7) in E7 such that (because
0 W) fi’)0 fi.x for every x W. In particular, a’0 a.x(fi, 1),
so that (see (3.9)-(3.11)) 0. But this contradicts Lemma 1, and
thereby proves Lemma 3.

If u(.), ..., u(.) are arbitrary fixed functions in (t), we define
the function u(. from [0, X E to Ea as follows"

1-- i g() + iui()

(g.24) u(,, ) u(, g) for 0 N < 1,--.,
1- (t-) + u(t-)

for tt N < .
Note tha, for every fixed g ET, u(. g) ( ). For ease of notation,
let

(3.25) o(t,g) o(t;u(’, g)), z(t, g) z(t;u(., )), 0 N < .
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We shall also consider 0(" ") and z(- to be functions from [0, X E7
to E3. It is easily verified that, for 0 =< =< 6,

(3.26) )(t, 0) (t), z(t, 0) (t).

It follows from well-known theorems on the dependence of solutions of
differential equations on parameters that Oz(t, )/0 and Oo(t,
exist and re continuous functions of nd in [0, X E. In addition,
for fixed , these derivatives are absolutely continuous functions of which,
for almost all [0, 6], satisfy the equations

d (Oz(t, ) o((t, ), t) o(t, )

(3.27)

d(o(,)) 0z(, )
d 0 0 + u(t) (t),

together with the initial conditions

oz(O, ) oo(o, )

In pricular, it follows from (3.26) and (3.1)-(3.3) that, for 0 6,

(3.28) (0z(t’))i=0
5z(t; u)’ (Oo(t’5))Oi=o So(t; u), i=1,...7.,

4. A undental lemma. In this and the next section we shall suppose
that (. is a solution of the extended variable terminM time problem, and
that h > 0 is the corresponding terminal time. We shall keep the notation
introduced in 3.

(4.) (t) , (t,) + fi(t) .
By hypothesis, (, V) ff H(6), orh(, V, t) 0fori 1, ..., u, nd

(4.2) STV0,fi STV0.e u for every u ff (t) and every t > 0.

For (x, y, t) in a neighborhood of (i, V, h), there is a parametric representa-
tion of the manifolds

H(t) {(x, y)’x E, y ff E, h,(x, y, t) =0 for i 1, -..,

of the following form"

x (, t),
(4.3)

y (, t),

where K(., -) and (., are functions from neighborhood of (0,
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in Eb_
Eb_ and N2 El) to E3, possessing continuous first partial deriva-

tives with respect to and the coordinates of 6, and

(0, 6),
(4.4)

(0, 6).

If we have a fixed endpoint problem, so that 6, Xx and .2 are continu-
ously differentiable functions from a neighborhood of 6 to Ea wth

(4.,5) X(t) , .(t) .
Let Vh(x, y, t) denote the vector in E defined by

Vhi
\Oxl Ox---z’ Ox3 Oyl Oy--z’ Oy3]

By the definition of
are linearly independent whenever (x, y) H(t). Let T denote the hyper-
plane of dimension 6-, that is tangent to H(6) at (, ), i.e.,

T I(x, y)’x E, y E, [Vhi(, , 6)].(x ,y-- e) 0,
(4.6)

i-

If, 6, I’ consists of the single point (i, ). Now define the se Q in Ev
8s follows"

(4.7) Q {(x ,y , STVfi + a)’(x,y) T,, <= 0.i.
It is easily seen that q is convex. If, 6, Q is the ray L {t/x(fi, c)"a <= 0}.

Let

(4.8)

nd, for every u(.) ff (B(6), a ff E 8nd A ff E, let

(4.9) (u,
and let

(4.10) V {6(u,

It is clesr that W V, that V is convex, and that o0 V f’l Q (see (3.10),
(4.6), (4.7), (4.9), and (4.10)).
We now prove fundamental lemma.
LEMMA 4. If there is a number X > 0 such that fi(. is continuous in

t ), t), then Q does not meet the interior of V.
This lemma is similsr to [8, Lemma 11, p. 112]. The proof we shsll give

below is based on the proof given by Wrg8 of an 8nMogous result [9,
Lemma 3.1].
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Proof. Let us assume that the lemma is false, so that there is a point
q Q that belongs to the interior of V. Let

(4.11) q (--,’-- r, STVfiq- a),

where (., ) T and a _<_ 0. If a 0, we replace a by -e, where e > 0
is sufficiently small, and thereby obtain a point that also belongs to both Q
and the interior of V. Thus, without loss of generality, we shall suppose that
< 0 in (4.11).
Since q is an interior point of V, there are seven points :1, "’-, Z;7,

in V, such. that 0, Z;1, X7 are vertices of a 7-simplex which contains
q in its interior. Let :. i[(w., a., A.), where wj(.) (g(h) and aj >__ 0.
For every e, 0 < e < h, and j 1, -.., 7, define u.(. e) ff (g(h) as
follows"

(w.(t) if 0_-< < h-- or
uj(t;e) lw.(h_) if h- =< < h.

It is easily seen that/t((u.( e), a., A.) --. :i as e -- 0 for each j. Hence,
for any fixed e > 0 sufficiently small, the points o0 and ti(ui( e), a. ,A.),
for j 1, 7, are vertices of a 7-simplex which contains q in its interior.
Let e0 be one such e, denote u.(. e0) simply by u.(. ), and let

(4.12) (o ti((uj(.), a., A.), j 1, 7.

Then the vectors (). o0), j 1, 7, are linearly independent, and
there are positive numbers 0, v, v7 such that

(4.13) q %i, Vi 1.
j=o j=o

Note that the functions u.(. ), j 1, 7, are constant in [h e0, h).
Let r(. be the function from E to E defined by

(4.14) r(,..., i): r(g)= t
jl

let X0 min {X, e0}, and let N be a neighborhood of 0 in E7 such that
r(g) E N2 and r(g) > h X0 whenever g N. Let u(., g), O(’, g),
and z (. g) be defined as in 3 (see (3.24) and (3.25)). Note that u (.
is continuous in and g for (tt X0, ) and all g E7.
For each g N, let fi(.; g) (g(h) and fi(.; g) (g(r(g)) be defined

as follows:

(4.15) fi(t; )) fi(t) q- ti.[u.(t)- fi(t)], 0 =< =< h,

(4.16) fi(t;g) u(t,g) for0 -<_ < r(g), fi(r(g);g) fi(h;g).
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It is clear that fi(t; 0) fi(t) for 0 _-< -<_ tl. If r(8) tl, then fi(t;
fi(t; 8)for 0 =< -<__ h, and obviously

STV0.()]fi(. 8) STV0,,fi(. 8).

It follows easily that the same equality holds if r(8) > h, and it is not
difficult to show that, if (8) < t, then

(4.17) STV0,()Ifi(. ;8) =< STV0,tfi(.

i.e., (4.17) is satisfied for all 8 N.
Note that (see (4.16) and (3.25)), for 0 -_< _-< r(8),

(4.18) 0(t; fi(" 8)) )(t, 8), z(t; fi(. 8)) z(t,

Since (, ) and (, ,) both belong to T, the entire line segment joining
the two points (assuming that they are distinct) belongs to T. Deote this
segment by [; is tangent to H(h) t (, ,). Hence, is tangent
to smooth curve F on H(t). Let F be represented parametrically as
{(.((s), t), .:(6(s), t))"-1 s 1}, where ((.) is coiuously
differentiable function from (-1, 1) to N, ((0) 0, and

(4.19) \j=l(0’l(0’tl)di(0)0alds 3=l0(0’t)dz(0))=(-’’-fr)’Ozds

If (, ) (, ), and this must be true if 6, we let F consist of the
single point (, ), or, equivalently, let ((s) ---= 0, in which case (4.19)
remains valid.

Let O(- be the function from N X (- 1, 1) to E defined as follows"

O(i, ti,, s) 0(8, s) (f1(8) g(8, s),
(4.20)

+ f3(8) g(8, s), ti-[STV u.- STV fi + ai]- sa),
/

where the fi(" are functions from N to E3 defined as follows"

(4.21) fx(8) 0(r(8), 8), f2(8) z(r(8), 8), f3(8) fi(r(8);

and the gi(. are functions from N X (- 1, 1) defined by

(4.22) g1(8, s) .(d(s), r(8)), k 1 or 2.

We shall show that O(. is continuously differentiable in N X 1, 1 ).
It follows from (4.15), (4.16) and (4.21) that fa(. is differentiable and

that

(4.23)
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It was shown in 3 that the partial derivatives Oo(t, ))/Oit and Oz(t,
exist and are continuous functions of and in [0, X E. Further,
0z(., -)/0t exists and is continuous in [0, X E, and since u(., .)
is continuous in (t k0, X E, 0(. )lOt exists nd is continuous
in (t 0, X E (see (3.25), (2.3) nd footnote 2). It now follows
from (4.21), (4.14), nd (2.3) that f(-) nd f(-) have continuous
derivatives in N, nd that, for N,

(o(t, ) + z(() ) + (() ),
(4.24)

0() (0z(t, )) + (e(() ) ()).

.Because of the differentibility properties that we hve ssumed for the
functions 6(. ), (., ), nd (., it follows from (4.22) that (.,.
nd (., -) hve continuous first derivatives in N (-1, 1), nd

0g(, s) 0((s), ())

(4.25)
0g(, s) 0((s), ()) A, k 1 or 2.

Oi Ot

It follows from (4.20)-(4.25) that 0(-, -) has continuous first partial
derivatives in N X (- 1, 1). In addition, by virtue of (4.14), (3.28), (3.26),
(3.24), (4.1), (4.8), (3.9), (3.10), (4.9) and (4.12),

(oo! (4.26)
\ 0ii =0

s-----0

Also, it follows from (4.20), (4.25), (4.14), (4.19), (4.11), (3.10), and
(4.13) that

( )(4.27) 00(8, s) ( 0).

If 6, the . are functions only of t, and obvious notation changes must
be made in (4.8), (4.22), and (4.25), after which (4.26) and (4.27) follow
in the same way.
Now consider the vector equation

(4.28) o(, s) o
for the unknown as a function of s. For s 0, it is easily seen (see (4.20)-
(4.22), (4.14)-(4.16), (3.26), (4.1) and (4.4)) that (4.28) has the solu-
tion 0. Because of (4.26), the Jacobian of (4.28) at 0, s 0
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is the determinant of the matrix whose columns are the vectors ( o0).
This Jacobian does not vanish since these vectors are, by hypothesis,
linearly independent. Since O(. has continuous first partial derivatives
with respect to all of its arguments in a neighborhood of (0, 0) E X E,
we can appeal to the implicit function theorem and solve (4.28) for g
as a continuously differentiable function of s in a neighborhood of s 0.
Say g )(s) ((s), -.., (s)). Then ((0) 0 and d,/ds can be
obtained by differentiating (4.28) implicitly:

" oo(,(s),s) ds(8) + oo(,(s), s) O.
j=l 0 ds Os

In particular, for s 0, we obtain, by virtue of (4.26) and (4.27),

d.(0)(4.29) (o. o0) %. (o. o0).
j----1 d8 j=l

Since the vectors (o o0), j 1, 7, are linearly independent, (4.29)
implies that d4)(O)/ds %. for each j. Recalling that %. > 0 and .(0) 0
for each j, we conclude that .(s) > 0 if s is positive and sufficiently small.
Also, O(s) -- 0 as s -- 0.

Thus, let , 0 < < 1, be sufficiently small so that () N, () > 0
for each j, and =1() < 1. Denote )() nd () by and $, re-
spectively, so that O(, ) 0. Let r($). It follows from (4.20)-
(4.22) that

(4.30) O(, ) .((), ),

(4.31) z(, ) + fi(; ) ,2(((), ),

(4.32) ’ [STV u STV fi -t- a] .
j-----1

But (4.30), (4.31), (4.18), and the representation (4.3) of H(t) imply that

(4.33) hi(o(; fi(. )), z(; fi(. )) + fi(; $), ) 0, i 1, -.., ,
i.e., (see (2.17)), fi(.; $) C(). But it follows from (4.17), (4.15), (3.12),
(4.32), the nonnegativity of the a. and -, and the relations > 0, a < 0,
that

STV0.tfi(. ;) -<_ STV[0,tl]fi(’) -- < STV[0,tl]fi(’),

contradicting (4.2), and thereby proving Lemma 4.

5. The necessary conditions. We now prove the following theorem which
provides necessary conditions for the extended variable terminal time
problem.
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THEOREM 1. Let fi(. be a nontrivial (i.e., fi O) solution of the extended
variable terminal time problem, let tl be the corresponding terminal time, and
let O(t) be the corresponding trajectory. Suppose that the points of discontinuity
of fi(. do not cluster at tl Then there exists a twice differentiable (column)
vector-valued function (. from [0, t] to E3 such that

(OG((t),t) (t)(5.1) ,(t)
\

for all

and

max (t) 1,

tl

(5.3) fo [(t)]T dl(t) STV[o,tl].

Let (4.3) and (4.4) be a parametric representation of H in a neighbor-
hood of (O(t), z(t ;) + fi(tl), tl) (, , t_), and let T be the hyperplane
tangent to H(t) at (, ). Then (. satisfies the following transversality
conditions:

(5.4) (t).(x 2) (tl).(y ) for all (x, y) T,

or, equivalently,

(5.4’)

and

for some real constants tq , t

(tl).[fi(h) (h-)] >_- 0.

If < x in some interval [t’, t"] [0, t], then fi(-) is constant

for t’ <= <= t". If fi(r) fi(t-) for some . (0, q], then (’) 1,
and there is a number such that

(5.6) fi(-) fi(’r-) (’), > 0.

If 0 fi(0) fi(0+), then (0)II 1, and fi(0+) o(0), where
o > O. In particular, if D {t: (t) 1, 0 <= <= t} is a finite set, then
fi(- is a step function whose points of discontinuity all belong to D, and whose
jumps are given by (5.6), or the modification thereof if - O.

--(t). IG(,t)- O:(O’h)lOt
+ (tl). I’- O:kl(O,ot t)l
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Note that (5.4) is satisfied trivially if 6, since, in this case, T consists
of the single point (, ). Also, if 6, 0ki(0, tl)/Ot, i 1 and 2, in (5.5)
should be replaced by d.i(tl)/dt.

Proof. By Lemma 4, Q does not meet the interior of V. Since o0 V Q,
o0 is a boundary point of V. Now both V and Q are convex, and V D W,
so that, by virtue of Lemma 3, the interior of V is not empty. Hence, there
is a supporting hyperplane to V at o0 that separates V from Q. Let
(1, 2, 7) 0, where 1 E3, fi2 E3, and 7 El, be a normal to
this hyperplane directed so that

(5.7) .t =< .o0 =< .0 for all t} V, 0 Q.

By virtue of Lemma 1, relations (5.7) allow us to conclude that 7 < 0.
Without loss of generality we shall assume that -1. If we leg

[p(t; fi)]’, (5.2) and (5.3) follow from Lemma 2 (see (3.18) and (3.19)),
nd (5.1) follows from (3.15) and (3.1).

Let (x, y) be an arbitrary point of T. Then (see (4.6) and (4.7))
(x , y , STV fi) Q, and (-x + , -y + ,, STV fi) Q. Con-
sequently, by virtue of (5.7) and (3.10),. (x ) + . (y ) o.

Taking (3.14) into account, we obtain (5.4). The equivalence of (5.4)
and (5.4’) follows at once from the definition of T (see (4.6)).

Consider the points (fi, 0, +/- 1) o0 +/- g: of V (see (4.9), (4.10), and
(3.10)). It follows from (5.7) that .(+/-:) =< 0, i.e., fi. 0, and the
equality in (5.5) follows from (4.8), (4.1), and (3.14).
The final conclusions of the theorem are direct consequences of (5.2)

and (5.3) (see [3, Theorem 3]).
It remains only to prove the inequality in (5.5). If fi(tl) fi(tl-),

the inequality is obvious. If fi(tl) fi(h-), then (tl)[I 1, and, since
]l(t) -<- 1for0 =< <

(5.8) 2(t).(t).
k, dt

Relations (5.8) and (5.6) imply the inequality in (5.5), completing the
proof of Theorem 1.
The vector-valued function ((.), -(. )) is analogous to the djoint

wriable in the formulation of the Pontryagin maximum principle, or to the
Lagrange multipliers of the classical calculus of variations. Reltioa (5.3)
corresponds to the maximum principle itself, or to the Weierstrass E-con-
dition.

If the set D is finitesay D , r}then fi(- is determined by
6 + scalar parameters" six initial values for (5.1), and the constants
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K in (5.6). Indeed, given the values of these parameters and the initial
values z(0), )(0), it is possible to "simultaneously solve" (2.3) with u fi
and (5.1), and determine fi through (5.6).

6. The fixed terminal time problem. In this section we shall derive the
necessary conditions for the extended fixed terminal time problem. Thus,
let t > 0 be fixed, and let fi(. be a solution of the corresponding extended
fixed terminal time problem. We shall keep the notation introduced in
3. Let (, ) be defined by (4.1), so that, by hypothesis, hi(, , t) 0
for i 1, v. and

(6.1) STVo,,I fi -< STVo,,I u for every

We define T and Q as in 4 (see (4.6) and (4.7)). Corresponding to Lemma
4, we have the following proposition.
LEMMA 5. The set Q does not meet the interior of W.
Note that here it is not necessary to assume that (. is continuous in

(t- k, h)for some > 0.

Proof. The derivation is almost identical to that of Lemma 4, with
certain simplifications, and we shall only outline the necessary arguments.
Assuming the contrary, we show that there are points ) x(u, a),
j 1, 7, such that each W and 0, , are the vertices
of a 7-simplex that contains a point q of the form (4.11), with a < 0, in
its interior. We let r() t for all E, and consider solutions of
(4.28) near s 0, where O(. is again given by (4.20)-(4.22) and
(4.16), and the function 6(.) has all of the properties described ia 4.
Relations (4.26) and (4.27) can now be derived as in 4, except tha (4.26)
can be obtained without having to show that Oe(t, )/Ot exists in a eigh-
borhood of t (since r(. t). The continuity of fi in (t , t) was used
only in showing the existence of this derivte, und consequently the extra
continuity hypothesis can here be dispensed with. It then follows as before
that there is a vector $ possessing the same properties as in 4 such that
(4.32) und (4.33), with t, are stisfied. But these equations are in-
consistent with relation (6.1), and we hve contradiction. This com-
pletes the outlined proof of Lemma 5.
We now have the following theorem.
THEOREM 2. Let fi(. be a nontrivial (i.e., fi O) solution of the extended

fixed terminal time problem, t being the terminal time, and let (. be the
corresponding trajectory. Then there exists a function (. from [, t] to
E such that (. and fi(. satisfy all of the conditions stated in Theorem
1 with the possible exception of (5.5). If the points of discontinuity of fi(.
cluster at t. then, in addition,

1
dt /t=tl
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Proof. Just as the existence of a vector fi (ill, ii2, /7) which satisfies
(5.7) follows from Lemma 4, it is here a consequence of Lemma 5 that there
is a vector fi (ill, fi, /7) such that

(6.3) fi.x_-< fi’o0-_< .0 for all ix W and 0 Q.

With the exception of (5.5), the conclusions of Theorem 1 now follow from
(6.3) as i 5. Since II/g(t) 1 at all points of discontinuity of fi, arid
(t)I] is difl’erentiablc (and certainly cotiuous) at 11, the last

sentence of Theorem 2 follows a oce.
Note that if fi(.) is a solutiol of tim cxelded variable terminal imc

problem, ib is a foriori a solution of a fixed terminal time problem. There-
fore, Theorem 2 also provides necessary conditions for the case excluded
Theorem 1; i.e., if the points of discotitinuity of fi(.) do cluster at tl,
the conclusions of Theorem 1 remain valid, wih the exception ha (5.5)
mus be replaced by (6.2).

7. Ixamples. Let us apply Theorems 1 and 2 to some problems that are
of contemporary interest.

First consider the variable terminal time, fixed endpoilt problem (some-
times referred to as the "rendezvous" problem) in which ,x(t) arid
(the fancY,ions that describe H(t)) represent the position and velocity,
respectively., of an actual or fictitious target at the time t. The equations of
motion of such a target can be written in the form

(7.1) dXl(t) X2(t) dX2(t) G(.l(t) t) q- a(t)
dt dt

where a(t) is the nongravitational acceleration experienced by the target.
Since (7.1) must hold, in particular, when tl, relations (5.5) in this
case take the form (see (4.5))

(ti).a(tl) t(tl).[fi(tl) fi(tl-)] >_- 0.

If a(t) 0, i.e., if the target is in a "free-fall" trajectory, we obtain

(.) /().[() (t-)] 0,

which implies that either fi(tl) fi(h-), or that (t)II 1 and (see
(5.6)) t(,) .{(tl) 0, i.e., relations (6.2) are satisfied.
Also consider the following three variable endpoint problems.
The first, the so-called "intercept" problem, is the problem in which the

vehicle terminal position is specified (but may depend on the terminal
time), and the terminal velocity is arbitrary. In this case, (4.3) can be put
in the form x a,,(t),y d, and

H(tl) T= {(x, y)’x
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The transversality condition (5.4’) in this case implies that (tt) 0.
Consequently, (t)II < 1 for t’ <- <- tl and some < h, so that, by
Theorem 1, fi(t) is constant for t’ =< -< h. This conclusion is valid whether
the problem is with fixed or variable terminal time. For the variable terminal
time problem, relations (5.5) take the form (since fi(h) fi(h-) and
,(h) 0)

(h). [’ d’l(h)l=0"dt
As a second example, consider the case where the terminal velocity is

specified (but may depend on the time) and the terminal position is ar-
bitrary. Then, (4.3) can be put in the form x 6, y ;.2(t), and the
transversality condition (5.4’) implies that (h) 0 whether the problem
is for fixed or variable terminal time. For the variable terminal time
problem, (5.5) takes the form

In the third example, the "transfer to a specified orbit" problem, we
shall assume that G(r, t) is independent of t. Here, the vehicle terminal
position and velocity are to be the same as the position and velocity at
any point on a specified solution curve (i.e., orbit) of (2.1) with T 0.
Thus, for every > 0,

dx(s)H(t) (x(s),y(s)) "--o < s < o,
ds

y’

dy(s) G(x(s)) x(0) a, y(0) bd8 )

where a and b are given vectors in E3 that specify the orbit. Then, in the
notation of 4,

and the transversality condition (5.4) takes the form

(7.3) .,(t)
Since H is independent of t, the functions and ,2 can be chosen to be
independent of t, so that, for the variable terminal time problem, we have
(by virtue of (5.5) and (7.3)) that (7.2) holds, i.e., either fi(h) (h-)
or (6.2) holds.

8. Existence and approximation theorems. In this section we shall prove
that the sets 5e(t) possess the two properties described in 2. We first prove
an almost self-evident, but nevertheless interesting, lemma.



340 LUCIEN W. NEUSTADT

We shall say that function h(.) from [0, 1] to E is regular if h(.
is continuous and piecewise smooth, and if dh/dt is of strog bounded
variation in [0, 1].
LEMMA 6. Let h (.) be a regular function from [0, 1] to E an arbitrary

positive number, and z0 and z arbitrary vectors in E. Then there exists a

function fi(. () such that the solution z(. ), O(" of (2.3), with u
and initial values O(0) h(0) and z(0) z0, satisfies the equation

h(t/)for all [0, ] as well as the boundary condition z() + fi() zt.
Proof. For ech [0, [], let

f(8.1) (t)
J0
G h ds + Z0

and let the function (. () be defined as follows"

(t)=
for t=0,

[z for .
Since the function G(., is bounded, it follows that the functio (.)
defined by (8.1) is of strong bounded vrition in [0, []. Let fi(.)
(1/[)(.) (.). Then fi ([). If we set z(t) (t) a,.d o(t)
h(t/[) for [0, [], it can be verified directly that the functions z(. and
(. are a solution of (2.3) with u fi that stisfies the initial and boundary
conditions prescribed in the statement of the lemma.

Let K(.) be a function whose domain is [0, nd whose range is the
class of subsets of E. Preserving the notation, of 2, we shall in addition
denote, for every > 0, by C([; K(.)) the following subset of ([)"

(;K(.)) w(.)’w(.) ([),o(t;w) K(t) for every [0,[].

We now prove the following existence theorem.
TnnonnM 3. Let t be a given positive number and let K(. be a function

from [0, into the class q[ all closed subsets of E with the property that
there is at least one regular function h(-) from [0, 1] to E such that h(t/t)

K(t) for every t [0, t], h(0) r0, and (h(1), y) H(t) for some
y E. Then (t; K(.)) is not empty, and there is an element fi(.)
(t K(. such that

(8.2) STV0,tl fi(" if STV0,t u(-).
u(t;(.))

Proof. The fact that (t K(.)) is not empty follows immediately
from Lemma 6. If (t K(. is a finite set, the theorem is trivial. Thus,
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let u,(. ), n 1, 2, be a sequence of elements of (tl K(- such that

(8.3) lira STV[o,tll tln if STVto,tl u.
n U(t 1;K(.))

Denote the functions z(. ;u) nd e(" ;u) by z(. nd e(" ), respectively.
Because the function G(. is bounded, the derivatives (. as well as
the functions z,,,(. themselves re uniformly bounded, nd the z(. re
equicontinuous o, [0, t]. Since u(O) 0 for ech n, nd the Immbers
STVt0,tu,, n 1, ,’ are bounded, it follows that the functions u,,(.
are uniformly bounded on [0, t,]. Consequently, the derivatives (-),
which exist ahnost everywhere in [0, t,], are uniformly bounded and the
fmctions ,(. re themselves uniformly bounded and equicontinuous on
[0, h]. Apl)ealing to Arzela’s Theorem [6, p. 122] and the Helly Selection
Theorem [11, p. 222], we conclude that there are a subsequence of the
u(. (which we shall continue to denote by u,,, without loss of generality)
ad fmctions u(-), z=(.), and (. from [0, t] to Ea, where u is of
strog bounded variation and z and re continuous, such that, for every

[0,

(8.4) limu,,(t) u(t), lime,(t) e(t), lim z(t) z(t).

Also, it is csily,scc that lim STV u STV [lim Un], i.e., (see (8.3)
nd (8.4)),

(8.5) STV u inf STV u.

Now define the function fi(. from [0, t] to E s follows"

f,=(t+) for 0<t<t,(S.6) fi(t) (t) for 0 or t.

Since u(. is of strong bounded variation, u(t+) exists for each (0, t),
and sice there re at most denumerable number of points t which a
function of bounded vrition is discontiuous, fi(t) u(t) for almost
ll in [0, t]. It is esily seen. that STV fi STV u, so that, by virtue
o (s.5),

(8.7) STV fi inf STV u.
u(t;(.))

It follows from (8.4) and (8.6) that fi(0) 0, so thnt fi(.) (t).
In addition, because of (8.4), (8.6), and the continuity of the functions
he, we hve that 0(0) r0, z(0) v0, nd h(o(t), z=(t)
+ fi(ta), ta) 0 for i 1, . Since the sets K(t) re closed by hypothe-
sis, it follows fl’om (8.4) that (t) K (t) for nllt [0, t]. Consequently,
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if we can show that O(’) )(" ;fi) and that z,(-) z(. fi), we can
conclude that fi gZ(t. K(.)), and (8.2) is then an immediate conse-
quence of (8.7).
By virtue of (2.3),

z(t) v0 + G(e,(s), s) ds,

e.(t) r0 + [z(s) + u(s)] ds, 0 t.

Since the functions G, z, and u are uniformly bounded, we can appeal to
the Lebesgue dominated convergence theorem, and conclude that

v0 + Jo (e(s), s) ds,

P

e.(t) r0 + J0 [z.(s) + (s)] ds, 0 5 t,

where we have also used the fac that u. (t) fi(t) for almost all [0, 6].
It now follows immeuiately (see footnote 2) that z(.) z(. fi) and
e(" O(" fi), completing the proof of Theorem 3.

If K(t) E for every 0, then (t; K(.)) (h), andi is
evident that there exists regular function h(. with the required prop-
erties. The existence theorem promised in 2 then. follows at o).ce from
Theorem 3.
We now prove the following theorem.
THEOREM 4. Let fi(. (t) for t > O. Then there exist functions

u G t n 1,2, such that
(1) the derivatives dun/dt are essentially bounded;
(2) u(t) fi(t) for each [0, tl] as n and
(3) lim. STV u STV ft.

Proof. We first prove two lemmas.
Lemma 7. Let w(. ), w(. ), denote a sequence of uniformly bounded

functions in $(t) such that w(t) fi(t) as n for each [0, t],
where fi(.) (6). Then o(t; w) o(t; fi) and z(t; w) z(t; fi) as
n uniformly in [0, t].

Proof. Let 0(. be the scMar-valued function on [0, t] defined by

o(t) o(t; w) o(t; ) + z(t; w) z(t; )

Then it follows from (2.3) and the boundedness of the partial derivatives
OG/Or that
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for some positive constant R and all [0, tl]. Now 0n(0) 0, so that, for
0 <= <__ tl,

It follows from the Lcbcsgue dominated convergence theorem

f fi(r) w,(r) dr 0 as n , and the lemma is now an immediate
consequence of Gronwll’s inequality.
LEMMA 8. For every > 0 there exists a 5 > O, depending only on e, such

that the following proposition holds" If w(. is any absolutely continuous
.(unction in (t) whose derivative is essentially bounded, and 0 and are
any vectors in E that satisfy the inequality 01 + < , then there
exists an absolutely continuous function u(. (t) with essentially bounded
derivative such that STV (u w) < e and

(s.8)
o(t ;u) e(t ;w) + 0,

z(t. ;u) + u(t) z(t ;w) + w(t) + .
Prog. Fix > 0. Let G sup, G(r, t) , rain {e/(7 + 2G), 1, t},

and ():. Let w(. be an arbitrary, fixed, absolutely continuous func-
tion in (t), und let 0 and be arbitrary fixed vectors in E such that
0 + < . Define the element @(. of (t) as follows"

(0 for 0 t- ,
@(t) (t- t+ i)m for t- 5 t- /2,

(t-h)m:+ for t- g/2 5 5 t,

where m (40/) / and m (3/) 40/. It can be immediately
verified that @(. is absolutely continuous, that its derivative is essentially
bounded, and hat

(a.) w() , () a .
STY (.) [11 ml]l + m Ill

Define the absolutely continuous functions )(. ), 2(. ), :(-), and u(.
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from [0, 6] to E3 as follows"

(t) ro + f0 [z(-; w) + w(-) + ,(-)1 &,

(8.11) 2(t) v0 q- f0 (i(), ) &,

(t) z(t; w) (t),

u(t) @(t) q-- w(t) --[- (t).

Since the function G(., is bounded, it follows that the deriwives of
z(. w) and of 2(. ), nd consequently of ((.) and of u(. ), are essetially
bounded. Now (8.11) and (2.3) imply that, for 0 =< =< 6,

(t) e(t; u), (t) z(t; u),

and (8.8) therefore follows from (8.9), (2.3) and (8.11).
Further,

u(.) w(.) (.) + (.),

so that (see (8.10))

(8.12) STV(u- w) =< STV@+STV: < 7+ STV.
Since @(t) 0 for 0 =< __< tl [:, it is a consequence of (8.11) and (2.3)
that, in this interval, o(t; w) (t) and z(t; w) 2(t); i.e., i:(t) 0 for
0 _-< =< 6- . Because ((.)is absolutely continuous,

tl

ft
tl

J0 1-[

But I[ll =< 2( (see (8.11) and (2.3)), so that STV _-< 2(; i.e., (see
(8.12)),

STV(u- w) < (7 +20)-< .
This completes the proof of Lemma 8.
We now turn to the proof of Theorem 4. Since fi(-) ff :(tl), fi is of

bounded variation and continuous from the right in (0, 6). Consequently,
fi(. has the representation fi(. fi(. q- fi2(" ), where fi(. and fi2("
are in 6t(6), fi(. is continuous, and fi2(. is the jump function of fi(. ).
Let 1, ., denote the points of discontinuity of fi(.) (or, equiva-
lently, of fi_(-)). Without loss of generality we shall assume that they are
infinite in number. Let , fi(;) fi(r() if - 0; ’ fi2(0+) fi(0)
if 0. Then

STV fi STV fil "q- STV fi,
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Let s(.; r) denote the unit step function at r"

for < ,
s(t;r) for > ,
s(r; r) fl0 if

if r 0.

For each positive integer n, define the absolutely continuous functions
w (.), w (.) (B(h) as follows"

forih-- =< =< (i+ 1) h,- i 0,-..,n-- 1;
n n

(,
i=1

Let @n(. w’(. -t- w" (.). It is clear that @.(t) -- fi(t) uniformly in
[0, h] as n , that each (. (g(6), and that

(8.13) STV 0rn STV Wn + E ri STV 1 + STV fi: STV ft.
i=1

For every e > 0 and positive integerj, define open intervals Is. as follows"

I, (O,e) if T O, I’,. (ri-- e, r’) if > O,

and let r(-; re, e) denote the absolutely continuous, real-valued functions
defined as follows" if ri > O,

0

r(t;ri,e) !(t-- ri-t- )

I

and if r. O,

Let ex, e2,

for 0 t_<_ re-- e,

for r-- e-<t =< r,

for

for 0 <- t_< e,
r(t; ri, )

for e -< _<_ h.

be a strictly decreasing sequence of positive numbers, with
e, < 1In for each n, such that, for every n, the intervals I1,,, [n,,
are mutually disjoint and all contained in [0, h]. Let the absolutely con-
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tinuous function Wn(" (g(tl) be defined as follows"

w(.) w (.) + (.; , ).
i=l

It is easily seen that the derivative of Wn(" is essentially bounded, that

Wn(t) "-rn(t) foF ( b Yi,en;
i=1

Wn(t) lrn(t) < ri

and that (see (8.13)),

for I., i 1, n;

(8.15) STV w, _<_ STV w, -[- fr <__ STV ft.

i’Now, fri -- 0 as i i.e., for any fixed > 0, there is an > 0 such
that i < for all i > i’. Consequently, it follows from (8.14) that
i[ w(t) n(t)[[ < for all U:I I.e. Since, for each i, I., I.+
and [’1=11., Z;, we conclude that (w(t) r.(t) -- 0 s n --. for
every [0, t]. Recalling that ,(t) -- fi (t), we obtain that

(8.16) lim Wn(t) fi(t) for all [0, tl].

Further, since w(0) 0 for ech n, it follows from (8.15) that the w(-
are uniformly bounded.

Appealing to Lemmas 7 and 8, we can assert that there exist absolutely
continuous functions u,.(. 6t(t) with essentially bounded derivatives
such thut

and

)(tl ;lln) (tl

z(t ;u,) + u,,(h) g(tl ;) + l(tl),

STV(u,- w,)--0 as n-- .
Thus, each u, @(t), and (w(t) u,(t) --+ 0 as n -- for all [0, t],
which, by virtue of (8.16), implies that

(8.17) lim u, (t) fi(t) for all [0, t].

Now STVu, =< STVw -V STV (Un Wn). Therefore (see (8.15)),
lim sup, STV u, -< STV ft. But it follows from (8.17) that lim inf,_. STVu,
>__ STV ft. Consequently, lim, STV u, exists and is equal to STV ft.
This completes the proof of Theorem 4.

According to Theorems 1 and 2, there is good reason to expect that a
solution fi(. of the extended variational problem is a step function. The
result of Theorem 4, as well as the method for constructing the approximat-
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ing functions in the proof thereof, together with (2.5), indicate that, loosely
speaking, a minimum-fuel thrust program generally consists of a finite number
of impulses.

9. Bounded thrust problem and limit theorem. In this section we shall
consider the original fixed terminal time variational problem described in

2 in the presence of the additional constraint that IIF(t)[[ -_< t for all t,
where is a given positive constant. This constraint is a mathematical
representation of the physical fact that the magnitude of the thrust vector
of a rocket engine is always limited.
The problem may be precisely formulated as follows. Preserving the nota-

tion of 2, for given positive numbers tl and tt, let

(t:, #) {F(.):F (: ff(t:), F(t)l] --< # for all E: [0, t:]}.

Then we shall consider the problem of finding (for given t and t) an
element $(.) (tl, t) such that M(tl; ’) _-> M(t; F) for every
F (tl, t). We shall refer to this problem as the t-bounded problem. (It
is to be understood in this section that all problems are fixed terminal time.)
We shall show that the -bounded problem always has a solution if t is

suificiently large; that, in a certain sense, the solutions of the t-bounded
problem tend to a solution of the extended fixed terminal time problem when
t -- ; and that the necessary conditions for the latter problem can, in a
sense, be obtained by passing to the limit in the necessary conditions for the
-bounded problem.
We shall first prove the existence theorem.
THEOREM 5. If # is suciently large, then (t tt) is not empty and there

exists an element (.) (tl t) such that M(tl ) i(tl 1;) for every
1; (tl, t); i.e., the t-bounded problem admits a solution.

Proof. Let us show that (t, ) is not empty for t sufficiently large.
According to Theorems 3 and 4, there exists a function u(- (tt) with

essentially bounded derivatives. Let STV u a andlet du(t)/dt
< < o for almost all [0, tl]. If 1;(- is now defined by means of rela-
tions (2.5) and (2.6), it follows that 1;(.) 5:(t) and IIF(t)ll -<_ i0 for
almost all [0, t]. Changing the values of 1;(t) for in a set of measure
zero if necessary, we conclude that 1;(. (tl, t) whenever t _-> M0/.
Denoting ri by xi+a and i by xi, where i 1, 2, or 3, and (-M) by xT,

(2.1) and (2.2) may be rewritten as follows:

i 5, 6,

(9.1) 2i(t) G(x4, xs, x, t) T(t)
x;(t)

i 1,2,3,
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In order to show the existence of an element ’ in (tl, t) that maximizes
M(tl F), we shall first consider a system which, in a sense, is more general
than (9.1), and which, following Warga [12], we shall refer to as the relaxed
system. Namely, we consider the following system of equations for the
scalar variables y, y7

/(t) y-(t), i 4, 5, 6,

T(t)
(9.2) i(t) Gi(y4, yh, y6, t)

yT(t)

7(t) liT(t)II-- [P(t) T (T1 T2 T3).

i 1, 2, 3,

If F(. is a measurable function from [0, o to E and (- is a summable

function from [0, to E such that the inequality J, Ill F(t)II - (t)] dt

< AM0 holds, we shall denote by (y(t; F,/Y), yT(t; F,/Y)) y(t; F,
the solution for -> 0 of (9.2), with T (t) F (t) nd (t) (t), that as-
sumes the initial values (y(0; F,/7), ya(0; F,/7)) v0, (y4(0; F,.., y6(0; F, /Y)) r0, y(0; F, /Y) --M0. Let 9:,(tl, t) denote the
class of all pairs (F(.),/Y(. )) such that
(1) F(. is a measurable function from [0, t] to Ea,
(2) /(. is a summable function from [0, t] into [0, ),

(3) [11F(t)ll - (t)] dt < AMo,

(4) F (t)II +/7(t) -< for all [0, t], and
(5) h(y4(tl ;Y, ), ,y(h ;F,/7), yl(t ;F,/7), ,y(t ;F, ), t) 0
for/- 1, ...,.
Then we shull consider the relaxed t-bounded problem which consists in find-
ing an element (1(.), /(.)) ff.(t t) such that y(t ,
<= y(t ;F, ) for every (F(.), /(-)) :(t, t). According to
result of Warga [12, Theorem 3.3], such a minimizing element always exists
so long as :,(t, ) is not empty, and we shall show below that this set is
not empty whenever is sufficiently large.

Indeed, it follows at once from (9.1) and (9.2) that, if 0(" denotes the
function which vanishes identically, then, for every measurable function

tl

Y(. from [0, tl] to Ea with f llF(t)[I dt < AMo,
30

(y(t; F,/Y0), "-’, ya(t; F,/Y0)) i’(t; F),

(y(t; F,/Y0), "-, y(t; F, o)) r(t; F),

yT(t; F, o) -M(t; F),
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for every [0, tl]. It then follows at once that F(. (tl, t) if and only
if F(. ), 0(-) R(tl, t). Since we have shown that (t,/) is not empty
for t sufficiently large, we conclude that 5:R(8, t) is not empty for large
enough.
We shall prove below that if ($(-), /(. )) is a solution of the relaxed

t-bounded problem (and we have shown that such a solution exists if t is
sufficiently large), then/(t) 0(t) 0 for almost all [0, t]. By what
was said. above, this will imply that 1(. (t, t) and that

M(8 ;i) -y7(8 , o) -yT(tl ;F,/Yo) M(tl ;F)

for every F(. (tl,/);i.e., i(. is a solution of the tt-bounded problem.
It easily follows from the Pontryagin maximum principle [8, Chap. 1]

that if (1(.),/(-)) is a solution of the relaxed t-bounded problem, then
there exist a twice differentiable function (. from [0, tl] to E3 and an
absolutely continuous function (.) from [0, hi to E, with /:(’)1]
+ (.) not vanishing identically, such that

(9.3) f(t) (OG(y(t; , ), y(t; c, ), t))"dt i9 .(t), 0 <= <= t;

(9.4) d(t) lye(t; 1, f)]-[(t).l(t)] for almost all t, 0 < < t;
dt

(9.5) b(8) =< 0;

(9.6)

/(t) ]l(t) + (t)_ (t).c(t)
A y(t; , )
[(t) v + v

w,,v>__o A
V +v=<t

/ for almost all t,
yT(t; 1,

O<_t.<__q.

It follows from (9.6) that, for almost all [0, t], either (t) 0 or
II(t)ll 0. Hence, if the zeros of ]l(’)l] are isolated, then (t) 0 for
almost all t. If the zeros of (" )ll in [0, t] are not isolated, then (t) --= 0.
For, if t is an accumulation point of zeros of t(. )11, then (t) (t) 0,
which, because of the uniqueness of solutions of (9.3), implies that (t) 0.
If (t) 0, it follows from (9.4) and (9.5) and the fact that and can-
not both vanish identically, that (t) const. < 0, and (9.6) then implies
that l(t)I[ (t) 0 almost everywhere in [0,

According to the Pontryagin maximum principle as applied to (9.1), if
:(-) is any solution of the t-bounded problem, there exist a twice differ-
entiable function (. from [0, tt] to E and an absolutely continuous func-
tion b(-) from [0,/1] to E, with (. )1[ + (" not vanishing identically
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such that
T

(9.7) (t) (OG(r(t; ), t) (t) 0 < < tl
\

(9.8) (t) --[M(t; ])]-[(t).i(t)] for almost all t, 0 N N h;

(9.9) (h) N 0;

A M(t; )
(9.1o)

v M(t; )J’

(9.11) (h).[x r(h ;)] (h)-[y-(h ;)] for all (x, y) T

where T is the hyperplane tangent to H(h) at (r(h ), (h ) ). We shall
sy that such a pair ((.), (. )) is an adjoint function which corresponds
to (.).

It follows from (9.10) that, for almost all [0, hi,

0 i (t)1[ < (t),

(9.12) (t) a(t),where 0 a [[(t)[[’ if [(t)]] (t) 0,

[ if 0 (t) > (t),

(t)l if 0 (t) > 4(t),
where

(9.13) (t) _U(t; )(t)
A

It is easily verified that (. is differentiable on [0, hi and that (see (9.8)
and (2.2))

(0 if (t) (t) 0,
(9.14) d(t)

JAM(t; ) [ (t)[[ (t)] if (t) (t) 0.

Hence, d(t)/dt 0 for all t, 0 N N h.
Thus, let (. be a solution of the -bounded problem, let ((.), (-)

be a corresponding adjoint function, and let (-) be defined by (9.13). It
follows a.s before that if (t) 0 on [0, h], then the zeros of (. )] are
isolated. Further, if (t) 0 on [0, hi, then (see (9.8), (9.9), (9.13) and
(9.12)) (t) eonst. < 0, (t) > 0 for all [0, h], and (t) 0 almost
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everywhere in [0, tl]. Note that (a(-), a(. is. an adioint function cor-
responding to 1(. for every a > 0. Thus, if lt’(t) 0, 0 _-< =< tl} is
of positive measure, then (t) 0 for some [0, tl], and, multiplying
((.), (-) by a suitable positive constant if necessary, we may assume
that

(9.5) mx (t)II 1.
OKttl

Adjoint functions ((-), (.)) that satisfy (9.15) will be said to be
normalized.

Let F0(. denote the function from [0, tl] to E3 defined by Y0(t) 0 for
allt, 0__< =< tl.
We now prove the following limit theorem.
THEOREM 6. Let pl, P2, be a sequence of positive numbers such that

fi-- as i . Then, if F0(.)$ (t), there exist a subsequence
of the fi solutions Fi(. of the u-bounded problems, normalized

adjoint functions ((.), i(" corresponding to the F, and functions fi(.
and (. from [0, t] to E3 such that (. is twice differentiable and fi(. is a
solution of the extended fixed terminal time problem,

(9.16) (t) -- (t) as i-- ,
(9.17) --M(t; F)i(t)

A --lasi---,

F(s)(9.18) M s Fi----- ds
---+ fi as i --

(9.19) r(t; F) -- e(t; fi) as i-- ,
(9.20) i’(t; F) - z(t; fi) + fi(t) as i---. ,
(9.21) M(t F) -- Mo exp [-A-STVfi] as i --where (9.16), (9.17), and (9.19) hold for every [0, tl] and the convergence
is uniform with respect to [0, t]; and (9.18) and (9.20) hold for almost all

[0, t] including O, t, and the points of continuity of fi(. ). Also, fi(-) and
(. satisfy (5.1)-(5.4), where (t) e(t; fi), andS, f, and T are defined as
in the statement of Theorem 1.

Proof. According to Theorem 5, solutions of the -bounded problem exist
when t*, where t < is a sufficiently large positive constant. For
every >= t let i,(. (t) be solution of the u-bounded problem.
Since F0(.) $ 5:(t), {t’l,(t) 0, 0 _-< _-< tl} is of positive measure for
every =_> t*, and, by virtue of the immediately preceding discussion, there
exists a normalized adjoint function, which we shall denote by (,(-),
,(. ), corresponding to each ’, with t -> t
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Let uv(. (1,(. )); i.e.,

ds, 0 <- <- t.(9.22) u,(t) M(s;)
It follows from the discussion in 2 that, for ech tt _-> *, u,(..) (t),
and (see (2.6), (2.10), and (2.14))

Since ..(.) (h, ) when

(9.24) M(;.) M(;..) for

By virtue of (9.2g) and (9.24), we can conclude ha SV u. N SV u.. for
all
The functions .(. are uniformly bounded by definigion, and sagisfy

(9.7) wigh replaced by .. Since G(-, has bounded firs partial deriva-
gives the functions .(. are also uniformly bounded. Bug if ghe . and
he . are uniformly bounded, ghen ghe funegions ,(. musg also possess
ghis propergy. Consequently, ghe funegions . and . for are equi-
eonginuous as well as uniformly bounded.

Just as was done in ghe proof of Theorem , we can now show wigh he aid
of (2.9) gha ghere exisg functions g(. ), (. and a subsequenee,,
of ghe such tha g (), and, denoging . by and . by N, such
ghag"

(a) (9.16) and (9.19) are satisfied uniformly in [0, ];
(b) (9.18) and (9.20) hold for almos all [0, ] including 0, and ghe

points of continuity of g(-);
(e) (5.1), (.2), and (SA) are sagisfied; and
(d) lim STV u. exisgs and

(9.25) STV fi -< lim STV u,

We ow shM1 verify (9.21). Let fi(. 3C(tl) be solution of the ex-
tended fixed terminal time problem. Then (see Theorem 4) there exist func-
tions ill(’) (tl), i 1, 2, ..., and positive constants M1, M2, ...,
such that limn_ STV fi, STV fi, and dfi(t)/dt < M < o for almost
all 6 [0, tl] and every i 1, 2, Setting ’ (fi), we conclude on
the basis of (2.5) and (2.6) that II n(t)ll -< MoM, Mmost everywhere in
[0, tl!, i.e., (modifying the values of ’ (t) for in a set of measure zero,
if necessary) ’ (t, t*) for every t* _-> MoM. Consequently, for each
n 1, 2, there is an integer I, depending on n, such that M(t F)
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>__ M (tl ’,) for every i >= I(n), or (see (9.23)), STV tt, =< STV fi,, for
every i I (n). Therefore (see (9.25)),

STV fi =< lim STVu -< lira STV fii STV ft.

But fi . (tl) and fi is a solution of the extended fixed terminal time prob-
lem, so that STVfi -< STVfi. Therefore, STVfi STVfi, and fi is a
solution of this problem also. Consequently, (9.25) is actually an equality,
and (9.21) now follows at once from (9.23).
We now verify (9.17). Denote ,, (.) by i(" ), and let

(9.26) (t) M(t; Fi)(t) 0 < < t, i 1 2,..-

We shall show that i(0) --* 1 as i -- , and that i(t) -< 1 for every
i 1, 2, and [0, tt]. Since each is differentiable, and d(t)/dt >= 0
t’or each i and t, this will imply that (t) -- 1 uniformly in [0, t] as i -- ,i.e., that (9.17) holds uniformly in [0, t].

Let E {t’ll(t)ll > (t), 0 <= -<_ h}, and let lEvi denote the
Lebesgue measure of E. According to (9.12), IIF(t)ll t* when E,
so that (sec (2.2)) 0 _-< M(t ;F) <= Mo ti[E I/A. Consequently,

(9.27) t E <= AMo, i 1, 2, ...,
and, since limi_ tt , E.I --* 0 as i .
Now suppose that ([) > 1 for some [0, t] and some i 1, 2, ....

Since .(. satisfies (9.14) with F replaced by F, t by t, and by i,
d ,(t)l] _-< 1 for every [0, hi, it follows that (t) ([) > 1 for
every i [0, t], and, by virtue of (9.12), that F(t) 0 for almost all

[0, t.]. This implies that F0 Y(t), which is a contradiction, so that
(t) =< for every i and t.

Because

M(t; F) >= M(t ;F) >= M(h ;,,) M*

(see (9.24)), and (t)ll =< 1 for each i and t [0, tl], it follows from
(9.14) that, for every i and t,

d(t) < ____g___ [1 (k(t)]c,(t)
dt AM*

where c, (t) is the characteristic function of E. Thus,

(9.28) d(t) ti [1 (t)]c(t)-- (i(t) 0 < < h.
dt AM*
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where $i(t) >_- 0 for all C [0, h]. But the solution of (9.28) is given by

i(t) 1--{exp[-f0 M* c,(s) ds

1 i(0) -t- (s) exp

so that

t (r) drI ds}AM* c,i

i(t) <_- 1 [1 ,(0)] exp
(9.29)

= 1 [1 (0)]A*, 0

where A* exp [--Mo/M*] > 0 (see (9.27)). We shall show that (9.29)
implies that

For each i, let r be any value in [0, ti] such that (r:)[I 1. (Such.
values exist by definition of the , .) If (r) 1, it follows from
(9.29) and the fact that (0) N 1 that, (0) 1. Now suppose that
(r) < 1. Then r E, and let (r{, r(’) be the largest open interval
contained in E which contains r in its closure. We shall suppose that i is
sumciently large so that (r(, r(’) (0, tl). Then, i(()11 (’)
and/or (r(’)l] (r(’). Without loss of generality, we shall assume
that (r)l (r).Since0 N r- r El,mdthereisacon-
stant K > 0 such that
we have that

0 1   (C)11   (C)11

But E 0 s i , so that 1 (r’)]] 1 (:’) wll be non-
negative and arbitrarily smll if i is sufficiently large. Consequently we can
conclude, by virtue of (9.29), that lim [1 (0)]A* 0, i.e., that
lim (0) 1. This completes the verification of (9.17).

It only remains to prove that (5.3) holds.
Let G {t’(t)]] (t), 0 /1}. It follows from (9.22)

(9.12) that du,(s)/dt 0when s G, 0 s 1, and that, for almost all
s G, either du,(s)/dt is a nonnegative scalar multiple of (s), or
i(s) 0. Hence,

(9.30)
tl

[i(t)]r du,(t)dt ,tt= fo, [dut(t dr.

If G, 1 (t)ll (t) ,(0), so that, by virtue of (9.30),

dt dt
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Since (9.25) has been shown to be an equality, we have, by virtue of (2.14),
that

du,(t)
dt

dt
dt

dt STV u. -- STV fi

as i---> o.

Also, (0) - 1 as i -- , so that (9.31) and (9.32) yield that

tl

]r du,(t) dt -- STV fi as i - .(9.33) [7(t)
dt

Finally, it, follows from (9.16), (9.18), (9.22) and the Helly-Bray Theorem
[6, p. 288] that

(9.34)
fo fo*’ [’
t
[(t)]’ du.(t) dt [7(t) du(t)

dt

-- [(t) dfi(t) as i--+

and (5.3) is now an immediate consequence of (9.33) and (9.34).
COROLLAnY 1. Let fi be a solution of the extended fixed terminal time prob-

lem, and suppose that fi F0. Then, if , is any solution of the t-bounded
problem (for every tt suciently large), we have that

(1) M(tl i,) --) M0 exp [-A- STV fi] as --
Further., if fi(. is the unique solution of the extended fixed terminal time
problem, and u, is given by (9.22), then as t

(2) u.(t) --- fi(t),

(3) t(t; .) ---, z(t; ) + (t),

(4) r(t; .) o(t; fi),

where (4) holds uniformly in [0, hi, and (2) and (3) hold for almost all
[0, hi including O, h, and the points of continuity of fi(. ). If, in addition

the function (. that satisfies relations (5.1)-(5.4) is unique, and (, ,) is
any normalized adjoint function corresponding to . then the following limits
exist uni-ormly in [0, h] as --
(5) ,(t) -- (t),

(6) --M(t; ,),(t)/A -- 1.

The proof of the corollary is straightforward and is therefore omitted.
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ON STABILITY IN CONTROL SYSTEMS*

EMILIO ROXIN
1. Introduction. An axiomatic foundation of the theory of control sys-

tems was developed recently, based upon the notion of attainable set [2],
[7], [8], [9]. Starting from a set of basic axioms, one proves that the prop-
erties of the so defined systems (called sometimes "generalized dynamical
systems" or "generalized control systems") are in accordance with those
of commonly known control systems. The main advantage of this approach
lies in the fact that concepts like invariance, recurrence, stability, etc.,
are introduced in their greatest generality, showing their intrinsic nature.
The relation of these systems with those defined by contingent equations

were studied in [10]. A way of defining generalized control systems locally,
on a dosed subset of the phase space, was given in [12].

In the present paper, definitions of different kinds of stability for gen-
eralized control systems are given, similar to those known for classical
dynamical systems (see, for example, [6]). Practically every kind of sta-
bility for dynamical systems corresponds to a strong and a weak similar
property in the case of control systems. This has already been mentioned
in a communication of the author [11].

It should be noted that the relationship of different kinds of stability of
control systems with some "Lyapunov functions" was already studied, in
a few cases, by Zubov [14]; here it is not treated, but it is, obviously, a good
subject for further investigations.

2. Definition of general control systems. Consider as phase space X a
complete, locally compact metric space. Elements of X will be denoted by
small letters (x, y, ), subsets of X by capitals (Y, F, A, ). Let also
denote:
(i) p(x, y) the distance between the points x, y X,
(ii) p(A, x) p(x,A) inf {p(x, y); y A} (distance between the
point x and the set A),
(iii) (A,B) sup {p(x,B);x A} ("deviation" of the set A from the
set B),
(iv) a(A, B) a(B, A) max {(A, B),/(B, A)} (distance between
the sets A, B in the Hausdorff pseudo-metric),

* Received by the editors February 19, 1965, and in revised form April 22, 1965.
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versity, Providence, Rhode Island. Now at Department Matematicas, Facultad de
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was supported in part by the National Aeronautics and Space Administration under
Contract No. NGR 46-002-015 and in part by the United States Air Force through
the Air Force Office of Scientific Research under Contract No. AF-AFOSR-693-64.
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(v) 3’(A,B) inf {p(x,B);x A} inf {p(x, y);x A, y B},
(vi) S(A) {x X; p(x, A) < e} (e-neighborhood of the set A).
The independent variable (which will be called time) may be assumed

to take all real values or all nonnegative values (t R or R+, respec-
tively). Generally, only R+ will be considered, but in most cases the
difference is irrelevant.
A control system will be assumed given by its "attainability function"

F(xo, to, t), which corresponds to the set of all points attainable, at time t,
from x0 at time to.
The following axioms are assumed to hold:
(I) F(x0, to, t) is closed nonempty subset of X, defined for every

Xo X, to-<= t.
(II) F(xo,to,to) [x0} for everyxo X, t0 R.

(III) Fornyt0 =< tl-_< t2,

F(xo, to, t2) U F(xl, h, t).
XlE F (xo, to, tl)

(IV) For any xl X, to =< tl, there exists some x0 X such that
x F(xo to, t).
(V) For eachxo X, to <= t, e > O, there isti > Osuchthat tl < ti

implies

a(F(xo, to, t), F(xo, to, t) < e.

(VI) For each x0 X, -< r, > 0, there is > 0 such that

imply

(F(yo t, ),F(xo t, ))<: e.

It was shown in [9] how the behavior of the control system can be satis-
factorily derived from these axioms. In the case when the control system is
only defined on a closed subset of the space X, the axioms have to be modi-
fied as pointed out in [12].
The following properties, proved in [9], will be needed.
The attainability function F(x, t, r) can be extended backwards, i.e., for

r (in [9] this extension was denoted by G). The properties of this back-
ward extension are almost the same as for the forward part, the main excep-
tion being that the continuity of F(x, t, -) in (axiom V) may fail and F
may become unbounded (finite escape time backwards).
DENTON 2.1. A mapping u" I -- X, defined in some interval

I [to, t] and such that

to < ’o =< T <tl
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implies
u(l) F(u(ro), ’o, ’1.),

is called a notion of the control system F; the corresponding curve in
X-space, a trajectory.
The continuity of a motion follows from its definition and axioms I-VI.
A motion, ul [ta, tb] --- X, is a prolongation of the motion, u2 [to, td] -- X,if [ta, tb] [to, td] and u(t) u2(t) for [to, td].
In [8] the following properties are proved.
THEOreM 2.1. If X F(xo to, h), there exists a motion u(t) of the control

system, such that U(to) x0, u(h) xl
THEOREM 2.2. If the motions ui(t), i 1, 2, 3, of a control system are

all defined in an interval [to, hi (or [to, + )), and if lim-ui( to) xo
then some subsequence u(t) converges to a certain motion uo(t) and the con-
vergence is uniform in any finite interval.

Finally, the notation,

F(A, to, t) [J F(x, to, t),
xA

will be used. If A is compact, then F(A, to, t) is also compact for every
t>=to.

3. Strong stability.
DEFINITION 3.1. The set A X is called strongly positively invariant

with respect to a certain control system, if for any x0 A, to -<_ t, the
relation F(xo, to, t) A holds. If A consists of a single point, it will also
be called a strong point of rest.

Note. If the control system is defined only in the closed subset Y X,
then A must be assumed to belong to the interior of Y, a a positive distance
from its boundary.

DEFINITION 3.2. The strongly positively invariant set A X is called
strongly stable if, for every e > 0 and to >_- 0, there is (e, to) > 0 such
that p(Xo, A) < t implies

F(xo, to, t) S(A.)
for all >_- to.

This stability will also be called strong Lyapunov stability. Now, as in
classical dynamicul systems (see, for example, [13], [1], [6]), it is possible to
define the following stability-type properties, which for simplicity are de-
noted by numbers followed by "s" (in order to indicate that it is a stability
of the "strong" type). The properties are"

(ls) The strong Lyapunov stability according to Definition 3.2.
(2s) The same Definition 3.2, but with (e. to) (e) independent of to
(uniform strong stability).
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(3s) For every to >- 0 there exists a io(to) > 0 such that for any motion
with u(to) xo So(A),

lim p(u(t), A) 0

holds (quasi-asymptotic strong stability).
(4s) Property (3s) with o independent of to >= 0.
(Ss) For every to >_ 0 there is io(to) > 0 such that p(Xo, A) < (o implies

lim (F(xo, to, t), A) 0

(i.e., property (3s) uniformly for all motions u(t) starting at (Xo, to) ).
(6s) Property (Ss) with io independent of t0 _-> 0.
(7s) For every to >= 0 there is io(to) > 0 such that

lim (F(So(A), to, t), A) 0

(i.e., property (5s) uniformly in x So(A); quasi-equi-asymptotic strong
stability).
(Ss) Property (7s) with io independent of to _>- 0.
(9s) There is io > 0 such that

lira (F(So(A), to, to + r), A) 0

uniformly for all to >= 0 (uniform quasi-equi-asymptotic strong stability).
The relations between these properties are indicated in Fig. 1. The two

groups of properties 1-2 and 3-9 are independent, as the following example
shows.
Example 3.1. Let X R and the control system be defined in Fig. 2,

where the motions u(t) are given graphically (this characterizes them suffi-
ciently well, the decrease for t- -- may, for instance, be taken expo-
nentially). It should be noted that through x0 0 there are infinitely many
different motions for every to. Axioms I-VI are satisfied, as it is easy to
verify.
The set A {x: x < 0} is positively strongly invariant and satisfies

property (9s), but it does not stisfy (ls). Therefore, the two groups of
properties in Fig. 1 are independent.
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It may be noted that if the definitions are not restricted to to -> 0, but
taken for all to R, then property (93) is not satisfied any more, but
property (83) is.

In this example, the set A is not closed. Indeed, for a compact A we can
prove"
THEOREM 3.1. For a compact, positively strongly invariant set, property

(7s) implies (1s).
Proof. Let A be compact, positively strongly invariant and satisfy

property (73). Then, for every to -> 0 and > 0, there are 80 > 0 and tl >= to
such that

(F(So(A), to, t), A) <
for all ->- h.

If A is a single point, it follows from axiom VI that there is 1 > 0 such
that, for all in the interval [to, t],

(3.1) (F(Sa(A), to, t), A) < .
Taking ti rain (ti, ti), this value satisfies property (ls).
If A is not a single point, the existence of 1 satisfying (3.1) can be proved

as follows. Take for every x A a value ti > 0 such that (F(S(x),
to, t), A) < e uniformly in to -<_ =< tl. A is covered by a finite collection,
A c [J Ss(x), i 1, 2, p. Then [J Ss, is a neighborhood of A and
there is some 81 satisfying

and therefore
F(S, (A ), to, t) S(A

for all to -< _-< t.
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THEOREM 3.2. Properties (2s) and (3s) together imply (5s).
Proof. Let A X be positively strongly invariant and satisfy properties

(2s) and (3s). Let to >_- 0 be given and ti0 i0(t0) be the same as in the
definition of property (3s). It will be proved that the same i0 satisfies (5s).
Assuming, indeed, the contrary, there is some x0 S0(A) and there is a

sequence t-- + such that

(3.2) (F(xo to, t), A) > a > O, i 1, 2, 3, ....
As A satisfies (2s), there is ti> 0 such that p(x,A) < i implies

/ (F (x, t, r), A < a for all r >= _-> to. According to (3.2) there is a motion
ul(t) through (x0, t0) such that

p(u(t), A) > a,

and, therefore,

p(u(t), A) >=
for ll [to, t]. In the same wy there is, for each i 2, 3, motion
u(t) such that ui(to) Xo and p(u(t), A) > a, and, therefore,

p(u(t), A) >=
for ull [to, t]. By Theorem 2.2 some subsequence of u.(t) converges to a
limit motion uo(t) for all => to, which therefore satisfies

p(uo(t), A) >=
for all to, contrary to property (3s).
The same proof applies to the following.
THEOnEM 3.3. Properties (2s) and (4s) together imply (6s).
For compact sets the following stronger results are valid.
THEOREM 3.4. If A C X is conditionally compact (i.e., the closure of A is

compact), positively strongly invariant and satisfies properties 2s) and 3s)
then A also satisfies (7s).

Proof. Let to >_- 0, rio(t0) be defined according to property (3s), and
i0 > .v > 0. It will be proved that v satisfies the requirement of property
(7s).
Assuming the contrary, there are > O, x S,(A), and t -- - ,i 1, 2, 3, such that

(F(x, to, t), A) > e > O, i 1, 2, 3, ....
As the closure of S,(A) may be assumed compact, the proof coincides

essentially with the preceding one, taking

u(to) x
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Therefore

p(ui(t), A) > .
p(u(t), A) >= > 0

for M1 [to, ti], / being related to by property (2s). By compactness,
x--> Xo So(A) may be assumed, so that there is some limit motion
uo(t), for which

p(uo( t), A) >=
for all >- to, contradicting property (3s).

In the same way one proves the following.
TUEOEM 3.5. If A C X is conditionally compact, positively strongly in-

variant and satisfies properties 2s) and (4s), then A also satisfies property
(Ss).

The definitions (is) to (gs) should, of course, be such that no two of
them turn out to be identicM (to imply ech other). This is obvious in
many cses, because it is known for classical dynmicM systems (which are
a special case of control systems, the strong stability being for them the
common stability). For less obvious typical cases, two examples are given
here.
Example 3.2. X R nd the control system is n ordinary dynamical

system whose motions are given in Fig. 3. The set [0/ satisfies properties
(2s) and (7s), but not (4s)
Example 3.3. X R and polar coordinates p, 0 re used. With the aux-

iliary function h(s) given in Fig. 4a, the equation of the motions are given
by

0 ]%//10]- 0[sgnO

(so that 0 O(t) are given in Fig 4b), and

p(t) [e-t- h(0)] (t0)
e- -[- h(O(to))

The motions starting at p(0) p0,0(0) 0, lie on the funnel-shaped
surface of equation

p- Pole-t+ h(e)],

drawn in Fig. 4c.
For every motion, p(t) --->0, so that the solution p - 0 satisfies property

(3s). In spite of this, the attainable set from p(0) p0,0(0) 0, which
for >- v is the cross-section of the bove mentioned surface, does not tend
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For x<e -t

for x _> e-t

x(t) Xoe-t
x(t) Xo-! + e-t

Fa. 3

to zero because for 0 0* -/2,
*p Pole- + 1]--+ p0 for

Therefore property (3s) does not imply (5s).
Example 3.4. Let X R and the motions be defined by

a arctan(t+ c), or a -+- .
Here a is taken mod 2 and ] and c are constants determined by the initial
conditions. This system satisfies property (Ss) but not (7s) (see Fig. 5).
All motions tend to A the origin, but

lira fl(F(S(A ), to, t), A) > O.

4. Weak stability.
DEFINITION 4.1. The set A c: X is called weakly positively invariant

with respect to a certain control system if for every x0 A, to => 0,
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h(s)

0

=_+7/" l-cos(t/c)
2

(b)

-t

(c)

FIG. 4

there exists some motion u(t) such that u(t0) x0 and u(t) E A for all
->- .t0. If A consists of a single point, it also will be called a weak point of

rest.
No.te. If the control system is defined only on the closed subset Y c X,

then the motion u(t) should be defined (not empty) for all => t0. For
the stability properties defined below, A is assumed to belong to the inte-
rior of Y, at a finite distance from 0 Y.
THEOREM 4.1. (Barbashin [2]). Necessary and sucientfor the wea positive

invariance of a closed set A is the condition

F(xo, to, t)

for every Xo E A, >= to, where is the empty set.
DEFINITION 4.1. The weakly positively invariant set A c X is cMled

weakly stuble if, for every e > 0 and to >= 0, there is i ti(e, to) > 0 such
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(b)

Fs. 5

that p(x0, A) < implies the existence of some motion u(t) with u(to) Xo
and p(u(t), A) < e for all >= to.

This kind of stability will be called also weak Lyapunov stability.
Now, s in the preceding section, the following stability properties are

defined; the "w" indicates that they correspond to the weak type.
(lw) The weak Lyapunov stability according to Definition 4.1.
(2w) The sume Definition 4.1, but with 8(e, to) independent of to >_- 0
(uniform weak stability).
(3w) For every to >- 0 there is 80(t0) > 0 such that p(xo, A) < ti0 implies

lim 7(F(xo, to, t), A) O,

where 7(A, B) inf p (a, b) a A, b B}.
(4w) Property (3w) with 8o independent of to >= 0.
(5w) For every to ->_ 0 there is 8o(to) > 0 such that if p(xo, A) < 60, there
is some motion u(t) with u(to) Xo and

lim p(u(t), A) 0

(quasi-asymptotic weak stability).
(6w) Property (Sw) with rio independent of to _>- 0.
(7w) For every to >= 0thereisti0(to) > 0 and for every e > 0thereis
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’1’ T(t, ) such that p(Xo, A) < i0 implies the existence of a motion
u(t) with u(to) Xo and lira p(u(t), A) 0 for -- + , in such a way
that p(u(t), A) < for all >= to + T (quasi-equi-asymptotic weak sta-
bility).
(Sw) Property (7w) with ti0 independent of to >- 0.
(gw) Property (Sw) with T T(e) independent of to >= 0 (uniform
quasi-equi-asymptotic weak stability).

Note. For a strong stable compact set A and any finite interval It1, t2],
it was proved in [9] that a value/t(e) can be taken such that the stability
condition of Definition 3.2 is satisfied for all to [h, h]. This is similar to
the classical dynamical systems. The following example shows, however,that
this is not true for the weak stability.
Example 4.1. Let X R and the motions of the control system be de-

fined by"
(a) In the solid pyramidal cone > 0, xi < y, xl < 2y t, the
motions are given by

dx x dy y
dt dt

(b) Outside that cone,

dx dy
dt dt

(c) On the boundary of that cone, the tangent to the motion (dx/dt,
dy/dt) at any point is required to belong to the convex hull of the set of
tangents at infinitely nearby points, plus the vector 2 4-1, i) 0.

This way, the motions are really defined by a contingent equation (see
[10]) and are shown in Fig. 6. At the points of the boundary of the pyrami-
dal cone, the solutions are not unique. It is easy to verify that the origin
x 0 is weakly positively inwriant and satisfies property (lw). On
the other hand, there is no o(, to) valid for all 0 < to < T for any T > O,
e>0.

This example can be easily modied in such a way ghag ig applies go
propergies (3w), (Sw), and (Tw) (ghe only ghing go do is go change con-
veniengly ghe mogions ougside ghe pyramidal cone). Therefore, ig makes
sense go dene ghe propergies"
(l’w) For every finite interval [h, t2] R+, there is a0 > 0 such that the
condition of property (lw) is satisfied for all to [h, t],
(3*w) Similarly for property (3w).
(5*w) Similarly for property (Sw).
(7*w) Similarly for property (7w), for both 0(t0) and T(e, to).
The relations between all these properties are given in Fig. 7.
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Example 3.1 (Fig. 2) is valid also for the weak stability; x 0 is a weak
point of rest which satisfies property (9w) but not (lw). This proves the
independence Of both groups of properties in Fig. 7.

Similarly, Example 3.2 shows that property (7w) does not imply (4w).
The following example shows that property (3w) does not imply (5w).
Example 4.2. Let X R and

x k cos o(t), y ke- sin a(t).

Here, k is a constant determined by the initial conditions, and the functions
a(t) are given (rood 2r) in Fig. 8a. It is to be noted that a(t) 0 is an
admissible function, from which other curves branch off.
The motions lie on tubes which become more flat as - -t-oo, but the

attainable set from any point of the tube-surface is, for sufficiently large t,
the whole cross section of the tube-surface; therefore, its minimal distance
to the origin tends to zero (property (3w)).

5. Finite stability. In the preceding two sections, the properties number
1 and 2 correspond to the common (Lyapunov) stability, and those num-
bered 3 to 9, to the quasi-asymptotic stabilities. Assuming both to hold,
one obtains the very important asymptotic stabilities. As in control systems
there is no assumption about uniqueness of the motion u(t) through each
point (x0, to) (which restricts so much the classical dynamical systems);
there can be defined even stronger stabilities than the asymptotic ones, by
requiring that the motions u(t) not only tend to, but actually reach, the
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@--@-(R) @
FIG. 7

invariant set A in finite time. This type of stability will be called finite
stability; it can be defined for the strong and for the weak stability, and
like the asymptotic one, it will be split up into the quasi-finite plus the
Lyapunov stability.
Once the main idea is established, the development is quite straight-

forward. Even some examples given, above can be slightly changed so that
they apply to the finite stabilities.

Finite stabilities of the strong type (here A is a strongly positively invariant
set).
(10s) For every to >- 0 there exists a i0(t0) > 0 such that for every motion
u(t) with u(to) Xo So(A), there is a finite value r] > 0 such that
u(to - rf) A (and therefore u(t) A for all > to r]). In general, r]

depends on the motion u(t). (This is the quasi-finite-strong stability.)
(lls) Property (10s) with 0 independent of to >_- 0.
(12s) For every to >= 0, there is ti0(t0) > 0 such that Xo So(A) implies
the existence of rf r(Xo, to) > 0 such that

F(xo, to, to + ’) A,
and therefore F(xo, t., t) c A for all > to + r].

(13s) Property (12s) with ti0 independent of to.
(14s) For every to >_- 0 there is t0(t0) > 0 and a finite rf(t0) > 0 such that

F(So(A ), to, to + -) A.

This is the quasi-equi-finite strong stability.
(15s) Property (14s) with io independent of to.
(16s) Property (15s) with r independent of to (uniform quasi-equi-
finite strong stability).

Obviously the following implications hold:

(10s) (3s); (lls) (4s); (12s) (5s); (13s) (6s);

(14s) (7s); (15s) (Ss); (16s) (9s).

Fig. 9 shows the implications between the stabilities of this last group.
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2

0

(b)
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Finite stabilities of the weak type (here A is a weakly positively invariant
set).
(10w) For every to ->_ 0 there is 0(to) > 0 such that if Xo So(A),
there is a motion u(t) with u(to) Xo and u(to - ’s) A for some finite
rs > 0 (and, therefore, this motion can be prolonged indefinitely in A).
This is the quasi-finite weak stability.
(10*w) lroperty (10w), and for any finite interval [tl, t2]
can be taken to hold uniformly for all to It1, t2].
(11w) Property (10w), with 5o independent of to _>- 0.
(12w) For every to >= 0 there is &(t0) > 0 and some value rs, 0

r(t0) such that x0 So(A) implies the existence of a motion u(t) with
u(t0) x0 and u(t0, ) A (quasi-equi-finite weak stability).
(12*w) lroperty (12w), and for any finite interval [tl, t] R+, 0(to)
can be taken to hold uniformly for all to Its, t].
(13w) Property (12w), with to ndependent of to >_- 0.
(14w) Property (13w), and r r](0) independent of to ->_ 0 (uniform
quasi-equi-finite weak stability).

Obviously, the following implications hold"

(10w) (5w); (10*w) (5*w); (11w) (6w); (12w) (7w).

(12*w) (7*w); (13w) (8w); (14w) (9w).

Fig. 10 shows the implications between the stabilities of this last group.
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Remarls about the finite stabilities. The importance of motions arriving
at the origin (supposed to be a positively weakly invariant set) in a finite
time plays an important role in control theory. Therefore, the stabilities
of the finite type have already been used, without special denomination,
by numerous authors (for example, Kalman [3], Lee and Markus [5],
LaSalle [4]).
The region of attraction for the finite weak stability corresponds to what

is known as the domain of controllability [5]. It may be noted that most
asymptotically stable systems of the real physical world are, indeed, fi-
nitely stable.
The strong type of finite stability has not been used, apparently, but a

rather trivial example shows that it can appear even in the simple case of:

2 --2%/[x l" (2 + u)-sgn x

with the control u(t) restricted by u] -< 1. In this equation, the extreme
values of u(t) correspond to the motions for u 1"

x(t)[ [0[xl + 3t0- 3t]

for u -1"

fort=< t0+ %/’lxl
3

for => to
3

for _<_ to -- W/Ix0 I,
fort__> t0+ W/ix01"
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Of course, the definitions given bove do not solve ny specific problem,
but they my help to tret systematically cses which pper frequently in
pplictions.
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ON THE EXISTENCE OF LYAPUNOV FUNCTIONS FOR THE
PROBLEM OF LUR’E*

K. R. MEYER
Introduction. This paper is an extension of the work of Yacubovich and

Kalman on the existence of Lyapunov functions for the problem of Lur’e.
The primary result of this paper is the removal of the unnecessary hypothe-
sis of complete controllability and complete observability from the theorem
of Kalman. These hypotheses have been used either explicitly or implicitly
by many authors working in this field. Indeed, the change of coordinates
introduced by Lur’e, the so-called Lur’e transformations, can be made
only if the system is completely controllable.
The first section contains a summary of elementary results and definitions

from linear algebra and control theory.
The proofs of these preliminaries are elementary and can be found in

[1], [2], and [3].
The second section contains the extensions of the lemma of Kalman-

Yacubovich. The proof of the first lcmma follows very closely the proof as
given by Kalman in [2].
The third section contains a few applications of the lemmas developed

in the second section.

1. Preliminaries. Let A be a real n X n matrix and b, c two real n-vectors
(column). Let E be Euclidean n-space. Denote by A (z) the characteristic
matrix of A, that is, A (z) zI A, where I is the identity matrix and z
is a scalar complex variable and let A (z)-1 {A (z)}-1. Let denote the
transpose, * the conjugate transpose and the determinant. Thus A(z)
is the characteristic polynomial of A. The subspaces of E generated by
the vectors b, Ab, will be denoted by [A, b]. The orthogonal comple-
merit of [A, b] in E will be denoted by [A, b]. Let the dimension of [A, b]
be p.
LEMMa A. In general,

[A,b]= {x E. x’Ab o, o, , 2, ...}
{x E" x’(exp At)b =-- O for all (- , )}
{x E" x’A(z)-Ib 0 for any set of z having finite limit point},
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and if all the characteristic roots of A have negative real parts then

[A, b] /x E: Re x’A(i)-lb =-- 0 for all real

One says the pair (A, b) is completely controllable provided [A, b] E
and the pair (A, c’) is completely observable if (A’, c) is completely con-
trollable.
LEMMA B. There exists a basis for E such that

A= b=A

where A A. and A are p X p, p X (n p) and (n p) X (n p)
matrices respectively, b is a p-vector and (A b) is completely controllable.
LnMMA C. Let (A, b) be completely controllable and let (z) g gz- - gnzn- be any polynomial with real coefficients of degree less than n.

Then there exists a real n-vector g such that g’A (z)-lb (Z) A (z)
LEMM D. Let (A, b) be completely controllable and t any real n-vector.

Let t’A(z)-ib P(Z)ll A(z) I1 -. Then the degree of the greatest common
divisor of p(z) and A (z) is equal to the dimension of [A’, k].
A rational function f(z) is said to be positive real function provided

Re f(zo) >= 0 whenever z0 is not pole of f(z) and Re z0 >_- 0.

2. The main lemmas. The extension of the Kalman-Yacubovich lemma
will require several steps. The first lemm is a slight extension of the lemma
as given by Kalman [2] and the proof of this lemm follows very closely
his proof. We obtain the additional information that B is positive definite
and that (A, q) is completely observable.
LEMMA 1. Let A be an n X n real matrix all of whose characteristic roots

have negative real parts, let - be a nonnegative real number and let b, l be two
real n-vectors. Assume (A, b) is completely controllable. If the function

(1.1) V(z) - - 2t’A (z)-b

is a positive real function then there exist two n X n real symmetric matrices
B and D and a real n-vector q such that

(a) A’B - BA -qq’- D,
(b) Bb-t= /q,
(c) (A, q’) is completely observable,
(d) B is positive definite and D is positive semidefinite,
(e) if io, oo real, is a zero of -q’A (z)-b - /, then it is a zero of
b’A -z)-DA (z)-lb, and
(f) all the zeros of -q’A (z)-ib -{- / are in the closed left halfplaue.

Proof. Let re(z) A (z)-b and k(z) A(z) I. Since T(z) is positive
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real,

0 <-_ r - m(iw)*tc - ]’m(i)

Clearly n(z) is an even polynomial with real coefficients and hence its
zeros are symmetric about both the real axis and the imaginary axis.
Since Re v(ico) _-> 0 for all real o, the zeros of n(z) on the imaginary axis
are of even multiplicity. Thus v(z) O(z)O(--z), where 0(z) is a real
polynomial all of whose zeros have nonpositive real parts.

Let O(z) 01(z)O.(z), where all the zeros of 01(z) have negative real
parts, all the zeros of 02(z) are pure imaginary, and the leading coefficient
of 0.(z) is one. Let e0 be the greatest lower bound of 01(io)01(-io) taken
over all real o. Since 01(z) has no pure imaginary zeros, e0 > 0. Let a be a
real positive number such that a e0and a 01(X)th(-X), i 1, ,n,
where hi is a zero of (z). If 01(z) is a constant, take a 0. Consider
F(Z) 02(z)O2(--z)[OI(z)OI(--Z) OZ2]. By the definition of a and r it
follows that (i) r (io) _>_ 0 for all real co, and (ii) the greatest common
divisor of r(z) and (z)(-z) is one.

Since r(z) is an even polynomial and Re r(ico) =>_ 0 for all real co, there
exists a polynomial ,(z) with real coefficients all of whose zeros have non-
positive real parts such that r(z) ,(z),(-z). Define the vector g such
that g’A (io)-b aO(z) {(z) }-1. Thus

0 <= r + m(io)*k + ]c’m(io) m(i)*gg’m(i)

r(i)
(1.3) (i)b(--io)

The formal degree of ,(z) is n and its leading coefficient is V/ and so

(z__2 ,() + v/;,
(z) (z)

where t is real and of degree less than or equal to n 1. The vector q is
then defined by t(z){C(z)} -1 q’m(z). By construction, (z) and (z)
have greatest common divisor one and so (A, q’) is completely observable.
Thus property (c) holds. Define D gg’; since by construction the pure
imaginary zeros of g’m(z) and -q’m(z) 4- / are the same, property
(e) holds.
Now define

B f e’4’t{qq + D}eAtdt,
.o
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and so, A’B + BA -qq’ D. Since (A, q’) is completely observable,
B is positive definite. From (1.3) it follows that

,
m (i) + ’m(i)

m*(io)Dm(io) -F (-q’m(i) + 7)(-m*(i)q + ) r

m*(i){qq’ + D}m(i) g(q’m(i) + m*(i)q)

b’Bm(i) + m*(i)Bb- 7(q’m(i) + m*(i)q)

and hence Re {Bb Tq}’m(i) 0 and so Bb 1 q.
The next step is the removal of the assumption that (A, b) be completely

controllable. This is done with the following lemma.
LEMMa 2. Let A be a real n X n matrix all of whose characteristic roots have

negative real parts; let r be a real nonnegative number and let b, be two real
n-vectors. If

T(z) r + 2k’A(z)-lb
is a positive real function then there exist two n X n real symmetric matrices
B, D and a real n-vector q such that

(a) A’B + BA -qq D,
(b) Bb--= q,
(c) D is positive semidefinite and B is positive definite,
(d) (x E" x’Dx 0} [A’, q]0 0},
(e) q [A,b],and
(f) if i, real, is a zero oj" -q’A(z)-b + , then it is a zero of
b’A(-z)-nA(z)-b.

Proof. Choose coordinate system for E such that

A lc

where A, A2, As are p X p, p X (n p), (n p) X (n p) matrices,
respectively, b, lc sre p-vectors, lc2 is sn (n p)-vecor, and such thst
(A, b) is completely controllable. Clearly if A has all characteristic roots
with negative real parts then so do A and A. If we partition B, D and q
in the same way, i.e.,

B= B B D q
q

we find that we must solve the following set of matrix equations"

(1) A’B1 + BA -qqt’-- D,
(2) A + Aa + B’A -qq;
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(3) A2’B + A3’B3 + B.’A. + B3A3 -qq’ D3,
(4)
(5) B2’bl-- 2-
By hypothesis, + 2k’Al(z)-lbl is a positive real function and so by
Lemma 1 there exists a solution to (1) and (4) and by Lemma 1(c) the
condition of Lemma 2(e) is satisfied. Also by Lemma l(e) the condition
of Lemma 2(f) is satisfied. Now let us consider (2) and (5). Since Bx and
q are known by Lemma 1 these two equations have only B2’ and q as
unknowns. We can solve (2) for B’ in terms of q by the formula

e’’{q q( A( B} e’t dr,

and then. substitute this into (5) to obtain

Rq eA3’t q eAlt b dt x/- q. l A- e As B e1 b dt.

Since the right hand side of the above is known, we can solve for q2 pro-
vided the matrix in the braces, R, is nonsingular. There is no loss of gen-

A3’terality in assuming that A is in. triangular form and so is in triangular
form. A typical term from the diagonal of R is then

eX’tq et’t b dt %/- q(- I A)- bl %/-

q,’ A(--X,)- bl /7r.
But this term is not zero since -X is in the open right halfplane and by
Lemma l(f), we know that the zeros of qA(z)-b /- are in the closed
left halfplane. Thus R is nonsingular and q and B are determined.
Now choose D. to be any positive definite matrix. It is clear then that

(5) has a solution and that (d) is satisfied.
Since B satisfies A’B A- BA -qq’ D, it must be of the form

B fo eA’t At fo eA’t DeAtqq e dt A-

If x0 is such that xoBxo 0, then xoe’tq
_

0 and xoDxo 0; and thus by
(d), x0 0. Hence B is positive definite.
The converse of this lemma is true also. The proof of the converse as

given in [2] does not depend on complete controllability and complete
observability.

In some critical cases the following lemma is useful. This lemma is in
essence due to Yacubovich [5] and was implicitly used by Meyer in [6].
LEMMA 3. Let A be a 2n X 2n real matrix with simple distinct pure ira-
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aginary characteristic roots i., j 1, n. If the residues of tc’A (z)-lb
at each io are positive then there exists a positive definite matrix B such
that

A’B -BA 0 and Bb-- t O.

This lemma follows at once by making a change of coordinates so that A
is diagonal. In this coordinate system B is chosen to be diagonal also.
Using the same procedure as used in the proof of Lemma 2 one can extend

the lemma of [4, p. 115] as follows.
LEMMA 4. Let A be a real n X n matrix, all of whose characteristic roots

have negative real parts, - be a nonnegative number and b, t be any two real
n-vectors. If

r + 2 Re ]c’A(io)-lb > 0

for all real o, then there exist two real positive definite matrices B and D and a
real n-vector q such that

(a) A’B - BA -qq’- D,
(b) Bb-k= x/q.

This lemma is almost the same as the lemma given by Yacubovich [7].

3. Applications. The lemmas developed in 2 can be applied to many
different systems that have been considered in the literature. Let us con-
sider the so-called direct control system. The equations are

2 Ax- b(o-),
(3.1)

0 CX

where A is a real n X n matrix, b, x and c are real n-vectors and (a) is a
continuous scalar function of the scalar such that () > 0 for all

0. The vector x and the scalar are functions of the real variable t,
time, and 2 is the derivative of x with respect to t. Let us assume also that
through each point in E there exists a unique trajectory of (3.1).
THEOnEM 1. If all the characteristic roots of A have negative real parts and if

there exist two nonnegative constants a and , a -- O, such that

(3.2) T(z) (a + z)c’A(z)-Ib
is a positive real function then all solutions of (3.1) are bounded, the trivial
solution x 0 is stable, and moreover if a 0 the trivial solution is asymp-
totically stable in the large.

If, in the case where a O, all the characteristic roots of the matrix A bc’
have negative real parts for all > 0 then the trivial solution x 0 of (3.1)
is asymptotically stable.
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Proof. Using the relation zI A (z) -t- A we obtain

T(z) flcrb + 2Re ac flA’c A (z) -l b,

and thus by Lemma 2 there exist a real n-vector q and two positive sym-
metric matrices B and D such that

A’B + BA -qq D, Bb-- ac-t- A’c

and moreover B is definite. Thus

(3.3) V x’Bx + fo 4)(0) do

is a positive definite function nd tends to as Ix -- . The derivative
? of V along the trajectories of (3.1) is given by

-? --x (A’B + BA) x + 2 Bb-- c A

(3.4) + c’b + .
x’Dx + ( () + q’x) + ().

Note that aa(z) has been added and subtracted from and that r c’b.
Clearly is also nonnegative and hence, by the well known theorems of

Lyapunov theory all solutions are bounded and the origin is stable. In
order to prove asymptotic stability we must show that no solution remains
in the set where - 0. Let a 0 and assume there exists a solution
x(t) of (3.1)such that x(0) xoandx(t)remains in the set where- 0.
But if 0 then z 0, and thus, such a solution is a solution of 2 Ax.
Hence x(t) (exp At)xo. From the second term ve obtain q’(exp At)xo O.
Also, xoDxo 0 and so by Lemma 2(d), x0 0.

In general we cannot conclude more than stability in the case where
a 0, but if the linear system 2 A bc}x is asymptotically stable for
all > 0 then (3.1) is asymptotically stable in the large also. In order to
rule out solutions that remain in the set where - 0, we must be sure
that there is no solution such that (z(t)) -q’x(t).

If r 0 then a solution of (3.1) that remains in the set where 0
must satisfy the linear equation 2 {A + r-/bq’}x. By Lemma 2(e)
there exists a nonnegative integer m such that q’b qAb

’A-lb mbq 0 and q’A 0. Hence if r 0 there exists an m such that
solution of (3.1) that remains in the set where - 0 must satisfy

{A- (q’Ab)-bq’A+lx.
As we have seen, a solution that remains in the set where - 0 is
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a solution of the linear constant coefficient differential equation. Let us
assume that there exists a nontrivial solution x(t) of (3.1) that remains
in the set where l? 0. We can assume z(t) # 0 since if z 0 we could
repeat the previous argument. Since x(t) is a solution of a linear equation
and is bounded for all t, then x(t) must be of the form

N

x(t) vlexp

where the vi are n-vectors such that v_. and o. are real scalars such
that o_i -0i. Clearly (z(t)) must be of the form

(z(t)) a/exp it},

where the a. are scalars such that a. -a_.. By substituting these forms
into (3.1) one obtains

v -aA (io)-lb.

Thus, by the well known formula from the theory of almost periodic
functions,

N

o-(t)4,(o-(t)) dt a [’c’A(ico)-b > O.

We shall have a contradiction once we prove the following remark.
Let the characteristic roots of the matrix A gbc’ have negative real parts

for all > O. If ioj oj real, is a characteristic root of A + r-I/bq’ when
br # 0 or of A (q’A’b)-ibq’A"+ when r q q’A’-b 0

and q’A’nb # O, then Im c’A(ico)-b 0 and c’A (i)-b >= O.
We shall consider only the case where r # 0, since the other case is very

similar. Since a 0 we may take 1. Then

qq’ + D (A’B + BA) A*(io)B + BA (io),

nd

q’A(io)-b ] + b’A*(io)-IDA(ioo)-b 2Reb’BA(io)-b.
Now the characteristic polynomial of A + r-nbq’ is

A (z) [{ 1 r-leq’A (z)-lb}
and so

r r-/q’A (ia,i)-b b’BA (ioi)-b 1/2c’AA (io.)-lb.
Since -%/; + q’A (io.)-1b 0 by Lemma 2(f), b’A (io)-DA (ioi)-b O.
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Thus

r + 2 Re c’AA(i)-lb Re ojc A(ij)-Ib 0
or

Im c’A (i)-b O.

Since the linear system 2 {A bc’}x is asymptotically stable for
’dall > 0, the theorem of Nyquist gives c (io)-b >_ O.

The above theorem can be modified several ways"

(i) If the matrix A has some characteristic roots on the imaginary axis
then Lemmas 2 and 3 can be used to prove asymptotic stability in a manner
similar to that found in [5] and [6]. In particular, we have the following.
THEOREM 1’. If A has 2s simple, distinct, nonzero pure imaginary charac-

teristic roots, the characteristic root zero of multiplicity p where p O, 1, 2,
and all other characteristic roots having negative real parts, then (3.1) is
asymptotically stable in the large, provided:
(1) there exist two nonnegative constants a and , a -- > O, such that
T(z) (a -- z)c’A (z)-b is a positive real function, and if io, real, is a
characteristic root of A, then the residue of (a -- z)c’A (z)-b at io is posi-
tive;
(2) if p 2, then lim0 z:c’A (z)-lb O,
(3) when a O, the characteristic roots of A tbc’ have negative real
parts for all t > O,

(4) if A is singular and a 0 then 4(r) dr -- as i( ---+ .
In order to prove this theorem one first changes coordinates such that

the system (3.1) takes the form

21 Alx- b1(z),

2 Ax b:(a),

2 Ax b(z),

Cl X -- C X2 -- Cwhere xl, bl, cl are r-vectors, x, b, c re 2s-vectors nd A1, A re
r X r, 2s X 2s mtrices, respectively. The vectors x, c nd b are p-vectors
and A is p X p mtrix, where p 0, 1, 2. The characteristic roots of A
M1 hve negative rel prts, the characteristic roots of A are M1 simple
nonzero pure imaginary numbers and the characteristic root of A is zera

ThemtrixA= (O) ifp= lndA=( )ifp=2. Let

V x, B1 x @ x2 B2 x2 @ xa Ba xa + 5 Jo (r) dr,
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where B1 is given by Lemma 2 as in the above and B. is given by Lemma

if p 0, Ba a if p 1, Ba (; )ifp 2. Thus,3and Ba=0

B1, B2, and Ba are r X r, 2s X 2s and p X p symmetric matrices, respec-
tively, and V is positive definite. One can proceed as before with only very
minor changes in the argument.

(ii) If () is restricted so that 0 < z$(z) < kz for 0, then instead
of adding and subtracting a$(z) from -l? one can subtract a4(z)
( /-1()). The proof carries over and the theorem remains the same

except that c’A (ioo)-lb is replaced by c’A (ioo)-b + k-1 (see [9]).
(iii) Let us make the change of variables y(t) e-Xtz(t), where x(t)

is a solution of (3.1) and X is any real number such that X > Re X,
i 1, n, and X, i 1, ..., n, are the characteristic roots of A.
Note that X may be positive or negative and the characteristic roots of A
may have positive or negative real parts. Then y(t) satisfies the equation

(3.5) (A XI)y be-Xtex y).

Let V y’By and then the derivative of V along the trajectories of (3.5) is

_fz _y’{ (A XI)’B + B(A XI)}y

-t- 2{Bb 1/2c} ’ye-Xt(eXtc’y) -t-c’ye-Xtrb(eXtc’y).
As before there exists a B such that V is positive definite and -1? =>: 0
for all y, provided

Tl(Z) c’(A XI)(z)-lb c’A(z + X)-lb

is a positive real function. Thus y(t) is bounded and the bound depends
on 11 I1.

THEOREM 2. /f X is as defined above and T(z) c’A(z - X)-b is a
positive real function, then there exists a nonnegative monotone scalar function
K(.) such that x(t) <= K(II xo II)ex, where x(t) is the solution of (3.1)
such that x O Xo
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A METHOD FOR COMPUTING LEAST SQUARES ESTIMATORS
THAT KEEP UP WITH THE DATA*

ARTHUR ALBERT AND ROBERT W. SITTLER
1. Introduction. The classical technique of least squares appears over

and over again in a multitude of contemporary applications. For example,
when one observes the values of a time function z(t) at various (discrete)
instants of time (say t 1, 2, ..., n) and one tries to find the best
fit to z(t) by a function of the form

: x,(t)
i=l

(where the (t) are specified), the weights x are customarily determined
by the method of least squres. The classical (discrete time) Fourier nMysis
is exactly of this form when the functions re sinusoidl. If the (t)
re polynomials, the problem reduces to that of finding the best polynomial
fit (of given degree) to the time history z(t). These re but two of the
mny possibilities, since the choice of the -functions is completely r-
bitmry nd t the disposal of the investigator. Once one decides on the
"fmily" of functions to be used, least squre theory ddresses itself to the
problem of finding those coefficients x which yield up "best" fit in the
sense of minimizing the men-squre residual error

(.) E(x ..., x,) E z(t) x ,.(t)

The method of least qurcs lso appears in a statistical setting. If
nssumes that the observations z(t) are of the form

(1.2) z(t) x,(t) + ,(t), , , ..., n,
i=l

where v(t) is zero mean uncorrelted stochastic process (white noise),
the functions v(t) re known, and the parameters x, x, x re to
be estimated, this formulation leads to the clssicM problem of linear re-
gression when one seeks to choose those estimators for the x’s which are
unbiased, lineur iu the dta, and have minimum wriance. The well known
Guss-Markov theorem shows that the least squares estimates for the
x’s have these properties. Further, if the noise is assumed to be Gussian,
then least squures estimators re ulso mximum likelihood estimators and

* Received by the editors Februury 8, 1964, nd in final revised form My 28, 1965.
ARCON Corporation, 803 Massachusetts Avenue, Lexington, Massachusetts.
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have minimum variance in the class of all unbiased estimators (be they
linear in the data or not). In addition, they enjoy many desirable decision
theoretic properties when the loss function is Euclidean-distance.

Let us now examine the problem of actually determining the least squares
estimator more closely. We begin by adopting the notational convenience of
matrix algebra. Let Z be the n-dimensional (column) vector whose com-
ponents are z(1), z(2), z(n), let H be the n m matrix whose (i, j)th
element is n(i), i 1, n, j 1, 2, m, and we let X be the m-di-
mensional (column) vector whose components are Xl, x., ...,

The squared residual error of (1.1) is now expressible as a Euclidean
distance, or equivalently, as an inner product:

E,(X) [z(t) xiv(t)]
(1.3) t=l i=1

Z HX (z HX)t(Z UZ)

where A is the transpose of A. It is well known that E,(X) has a minimum
at X if and only if X satisfies the so-called normal equations,

1.4 HtHX HtZ,
so that the problem of choosing the weights xl, x, xm which yield the
best fit to the observations z(1), z(2), z(n) (in the sense of minimiz-
ing (1.1)) is equivalent to the problem of finding a solution to (1.4).

Suppose xl, x, x are chosen to minimize (1.1) and suppose that
an additional observation, z(n + 1), is taken. How does one modify the
current least squares coefficients to take into account the new data point?
In terms of the linear equations (1.4) we notice that a new data point
z(n -I- 1) adds an additional component to Z and requires that a new row
be adjoined to the matrix H. In Theorem 2.4, we will show that J+l
(the least squares estimate based upon n - 1 observations) is related to
2 (the least squares estimate based upon n observations) by a first order
difference scheme of the form

h2n+1 2n .L Kn+l[z(n " 1) +IX.],

where z(n + 1) is the (n -- 1)st observation, hn+ is the new row of the
H matrix

Fi(n -F i)]
h+ =]v(n

Ln(n + 1)

and Kn+l is an m-dimensional vector which is defined recursively in terms
of the vectors hi, hn+l.
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In 3 we show how the problem of minimizing (1.3) subject to linear
constraints can be reduced to the problem of minimizing (1.3) subject to
no constraints (but with a new H-matrix), and following Theorem 3.1,
we indicate how the constrained least squares estimates can be computed
iteratively.

In many applications (particularly regression analysis and the analysis
of variance) the minimal squared residual error,

E inf Z, HnX ]12,
x

is a quantity of prime interest. In 4 we ask the question: What happens to
E when a new observation is taken? In Theorem 4.1 we will show that
En+l (the residual based upon n -- 1 observations) is related to E by
a recursion of the form

E+I E -- ]c+l[z(n -- 1) h+iX],

where {kn+l} are a sequence of scalars which can be computed iteratively in
a convenient manner. In 5 we extend the results of 2 and 4 to the case
of weighted least squares and in so doing, we will arrive at an alternate
approach to the recursive calculation of constrained least squares estimators
(and their associated residual errors) in which constraints are treated as
"infinitely reliable" observations in a weighted least squares recursion.

It seems natural that these results may be applied to situations where
computations must be performed in "real time" as the data flow in. For
example, the computation of satellite orbit parameters is often of this nature.
The sequential analysis of variance is yet another such application.
Our methods and results were prompted by Kalman’s work (mainly [5],

where he pointed out that least squares theory could be viewed as a limiting
case of his essentially Bayesian approach). The development in 2-4 is
intended to be elementary. It is, therefore, lengthier (and hopefully more
instructive) than it might be if economy of exposition were our paramount
interest. For example, some of the results of 2 are scattered throughout
the literature in the context of the theory of generalized inverses (see
[2], [3], [4], and [6]), but we have rederived them as purely analytic prop-
erties of matrices, without any references to their geometric interpreta-
tion in terms of generalized inverses and projections. On the other hand,
5 depends crucially on several established results in the theory of gen-
eralized inverses whose proofs are not included because of their great
length.

2. How to update the last least squares estimate. Let Z be an n-dimen-
sional vector and let H be an n m matrix. In the last section it was shown
that the m-vector minimizes Z HX I12 if and only if is a solution
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of the system of so-called normal equations

(2.1) HtHX HtZ,
where H is the transpose of H.

Equation (2.1) always has a solution in X. In fact there is a (unique)
value of X of minimum norm which satisfies (2.1). This fact will be stated
as Theorem 2.1. A preliminary lemma is required.
LEMMA 1. For any matrix H,

a the matrices

P(H) lim HHe(HH + d)-1

and

always exist and are equal;
(b) P2(H) P(H);
(c) HeR(H) He;
d the matrices

and

lim H(HeH + d)-iH
e.-,O+

lim (HH + d)-H
e->O+

lim H(HeH + d)-e--->O+

exist and are equal;

(e) for any vector X, if HX HP(He)X O, then P(H)X O.

Proof. Since

Ht(HHt + d) (HtH + d)H

(I will always denote the identity matrix of the appropriate dimension),
and since HH and HtH are nonnegative definite, it follows that (HH + d)
and (HtH + d) are positive definite when e > 0 and so have inverses.
Hence

H(HH + {!/) -1 (HtH +
for every positive e, so that if either of the limits in (a) or either of the
limits in (d) exist, they are equal.

(a) HH is symmetric, so there are an orthogonM matrix T and a diagonal.
matrix D such that T(HHt) T D, where D diag (,, k2, ),.).
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(In the remainder of this section, T, D, and the matrix

U diag (vl, v2, .--, vn) where

1, 2, n,
if O,

vi= if= 0,
i

will remain as defined here.) Thus,

(HHt)(HHt + eI) -1 TtD(D + d)-lT-- TtU T
as --> 0, so that P(H) exists nd is equal to TtU T.

(b) Since U2 U and UD DU D, P2(H) P(H), and
(c) HHtp(H) TtDUT HH, so that for any vector,

I1Ht(I P(H) Y [Ht(I P(H) y]t[Ht(I P(H) Y]

[(I- P(H)) Y]t[HHt(I- P(H))Y] O,
so that Ht(I P(H)) O.

(d) As stated in the beginning of the proof, if either of the limits in
(d) exists, then both exist and are equal. Replacing H by H in (c), we
see that H HP(Ht) so that by (a),

(HH .z
7. d)-iH (HHt..{-- d)-IHP(Ht)
(HH + d)-1 lira HHt(HH + I)-H Tt(D --[--d)--UTH.

.-->0

But

exists and equals V dig

It follows that

lim (D -t- d)-iU

v,), where

if i 0,

otherwise.

lira (HH .- d)-H TtV TH
coO

exists.
(e) If HP(H)X O, then for every e > O,

0 [HP(Ht)X]t[H(HtH .-[- d)-X] [p(Ht)x]t[HtH(HtH + d)-X].

Letting - 0, we see that

[P(Ht)X]t[P(Ht)z] P(Ht)x
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(The geornetricMly minded reader may have noticed that P(H) is the
operator which projects onto the range of H.)
THEOnEM 2.1. Let H be an n X m natrix and let Z be an n-vector.

Among the class of vectors which satisfy the equation

(2.1) HtHX HtZ
(and hence minimize z ItX I]"), the vector

(2.2) lirn (HtH + eI)-lHtZ
e-O+

is the unique veclor of minimum norm.

Proof. From Lernnrna l(d), always exists.

HtH Htp(It)Z tttz,
by Lernrna 1 (a, c), so that satisfies (2.1).

Let Y be any solution to (2.1). Then.

Y p(Ht)y + [I P(ttt)]Y
Since HP(Ht) H, we see that

stz HtHy= Htt[P(Ht) Y],
so that P(Ht) Y, satisfies (2.1). Since P=(Ht) P(Ht),

[P(Ht)y]t[I- p(Ht)]Y Y*[P(H) P=(H’)]Y 0,

so that P(Ht) Y is orthogonal to [I p(Ht)]Y. Thus

Y [[ P(st) Y ]1 + (I P(H)Y [1 _>_ P(H) Y
with strict inequality holding unless Y P(H) Y.

Since P(Ht) Y and p(Ht)ff satisfy (2.1),

HtHP(Ht)[ Y- 2] O.
Since

HP(Ht)[ Y- ] = [HP(Ht)( Y- 2)]t[HP(Ht)( Y- 2)]
[p(Ht)(Y- 2)]t[HtHP(Ht)(Y- 2)]= O,

it tollows that HP(Ht)( Y 2) O. From Lernrna l(e), we conclude
p(Ht)2 P(Ht) Y. But using Lernrna l(d), (c), with H replaced by
H throughout,

P(Ht)2 lirn P(Ht)Ht(HHt + .I)-:Z lirn Ht(HH + .I)-IZ 2,
e0+ 0+

so that P(H) Y . Thus, we have shown that if Y is a solution to (2.1),
--> II, wi h s rio inequality holding unless Y .
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Let us hereafter use the notation

(2.3) () (HtH + d)-IHtZ.

(e) has a useful statistical interpretation. If Z is a random variable of the
form

(2.4) Z HX + V,

where H is a (known) matrix, X is a zero mean normal random vector
whose covariance is (i/e)/and V is a zero mean normal random vector
whose covariance is the identity matrix, then

(2.,) () E(X Z),

where E(X Z) is the conditional expectation of X given Z.
If one thinks of Z as a set of observations and X as a non-observable

quantity which must be estimated on the basis of the Z’s, it is natural to
wonder how the acquisition of a new piece of data will affect the current
estimate of X. In [5] Kalman has examined this question in detail and in
great generality. We will specialize his results to the case at hand (and for
the sake of self containment, prove them here). Since (defined in (2.2))
has an interpretation as the least squares estimator of X, and since

lim0 (e), we will be able to derive a similar recursion for least
squares estimators by passing to the limit appropriately.
THEOREM 2.2. (Kalman). Let v(1), v(2)...-be independent identically

distributed normal random variables with zero mean and unit variance. Let X
be an m-dimensional vector-valued normal random variable with zero mean and
covariance (l/e)/. Let hl, h2,.., be a known sequence of m-dimensional
vectors; let

z(n) htX - v(n), n 1, 2,

let H, be the n X m matrix whose jth row vector is ht, j 1, 2, n; let

z (.

and let

(2.6) (e) E(X Z), n 1, 2, ....
Then

n() -n--l({) + K(e)[z(n)
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where o(e) O, n 1, 2, K(e) is an m-vector of the form

(2.8) K(e)
1 + hJ_l(e)h,

and (e) is the covariance ofX (e). (e) satisfies afirst order recursion,

1 + hJ_l(e)h
n= 1,2,..-,

(2.9a)
z0( )

and is given in closed form by

(2.9b) 2,(e) 1 [I HH+ el) HH]

Proof. For the purpose of this proof, we will fix > 0 and suppress it in
the notation so that for the time being 2(e) becomes 2 and 2(e) be-
comes Z.

Let

Since

h Xn-1,

X=x-2_.

XZ_IEX_IZ,_I EE(XZ_ Z_I) E(

it follows that EX,Z_I O, so that .. and Z_ are also independent.So
then are (n) nd Z_. Thus,

E(X E(X

(The intermediate step is well known property of normal distributions.
We Mso use the fct that for my zero mean vectors hving joint normM
distribution, E(X Y) E(X yt)E( Y yt)- y.)

Let

(2. lOa) 2;_ EXnXt.
Since

it is easy to see that

(2.lOb)

2(n) h’X + v(n),

E n hty,,_h + 1.
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(2.10c)

so that

(2.10d)

Thus,

Since g and Zn-1 are independent,

EXX,_I O,

E2(n)X E(n)X, Z,_lh,.

where K K(e) is defined in (2.8). We establish (2.9) by noting that

so that

The second term on the right is proportional to (n) ht + v(n). In
fct, E(X (n)) K2. Since+ is independent of Z, it is lso inde-
pendent of (n). Thus,

X EX+ X+I + K- EX [Z- h.][Z- h]
1 ht_h

To establish (2.9b), we proceed as follows. From (2.10),
-t EX+X() X+lX+ x+(x 2())*

EX+IX () 0). Since(since

H*H + d)-H*Z
by (2.3), and since

Z,=HX4-V,,

we see that

Z,() E(X 2,())X 1 1- 1_ (HtH + d)-HtH.
6

The recursion (2.7)-(2.9) has a more general interpretation which we
now state.
TnonnM 2.3. Let h h= be a sequence of m-dimensional vectors, and

let H, be the n X m matrix whose jth row vector is hj t. Let z(1), z(2), be a

sequence of real numbers and let Z, be the n-vector whose jth component is z(j).
For each n, let

2() -H, Hn + d) H. Z, n 1, 2,
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Then

(2.11) 2n(e) .n-l(e) + K(e)[z(n) h,t^x_l(e)],

where K, e is defined in (2.8) and (2.9).
In words, n-l(e) is the solution of the equation

H,_IH,_I + eI X Hn_lZn_l

and .(e) is the solution of the equation

(HH + d)X gz.,
where Hn is obtained by adioining a new row (hn t) to H._I and Z is ob-
tained by adioining a new component to

Proof. We need only point out that if each z(n) is a random variable of
the form z(n) h,tX v(n), where the v(n) are independent, zero mean
normal variates with unit variance and X is a zero mean normal vector with
covriance of (l/e)/, then the conditional expectation of X given Z is
exactly

Hnt(HH, + eI)-lz (HntHn + eI)-lHntZ
By Theorem 2.2, the (purely algebraic) relation (2.7) holds between
E(XIZ) and E(X[Z_I), and so (2.7) must also hold between
H, H -- eI) HntZ, and ----1 --1Hn-lHn-1 Hn_IZ,,-1 for any Z nd
any H.
By letting e tend to zero in (2.11), we can now establish a similar re-

cursion between least squares estimators. We remind the reader that
vector 2 minimizes the Euclidean distance
satisfies the (so-called "normal") equation, HtHX HtZ.
THEOREM 2.4. Let z(1) z(2 be a sequence ofreal numbers (observations),

and let hi, h,.., be a sequence of m-dimensional vectors. Let H, be the
n X m matrix whose jth row is ht, j 1, 2, n, and let Z, be the n-vector
whose components are z(1), z(2), ..., z(n). For each n, let 2, be the m-di-
mensional vector which is the ninimum norm solution (in X) of the equation
HntHnX H,tZn n 1, 2, .... Then

2, 2,_1 -- K[z(n) h, X_I], 2o O,(2.12)

where

(2.13) K
Bn-1 h.

if h, is not a linear combination of
hn-1

otherwise;
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A, satisfies the recursion,

f [A- hn][A-x hn] if hn is not a linear combi-

(2.15) A, hJA,_l hn nation of hl h2 hn-x,

n-- otherwise;

Ao is the m X m identity matrix, and Bo is the m m null matrix. For every
value of n,

BHn H(2.16) A I- HH I-

Proof. We begin the proof by asserting that Z, (e) defined in (2.9) cn be
written as

(2.17) 2n(e) 1 [A, + eB, + o(e)],

where the term o(e)/e converges to zero as e - 0, and where An and Bn
satisfy the first halves of (2.15) and (2.14), respectively, if A,_hn O,
and the second halves otherwise. This assertion is true for n 0, and is
verified by induction, to be true for all n.

Inserting (2.16) into (2.8), we find that

An-lh
]hJ--A_- + o(1) if A,- hn # O,

K. ()

[Bh+o(1) ifAn-lhn O,

K, + o(1)

where K, is defined in (2.13) and o(1) tends to zero as e - 0.
Thus, by Theorem 2.3,

2n(e) 2n--l(e) -t- [K, + o(1)][z(n) h z._()]

for every n, where

2n(e) (HntH, + d)-H,tZ,.
By Theorem 2.1, .2n lim_,0.2(e) for every n.
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Thus,

2n 2n-. + K,[z(n) h,t2n_l].
It is easy to show (either by induction or by referring to Theorem 2.5) that
An-lh 0 if and only if h is a linear combination of hi, ,h-. This
establishes the first part of Theorem 2.4.
Now, to establish (2.16), let

(2.18) D. diag (X, X2,

where the Xi are the eigenvalues of HtHn, let

(2.19)

where

(2.20)

and let

V. diag (v,v2, v.,),

vi IIo/X if X#O,
otherwise,

(2.21) U D,Vn.

If Tn is the orthogonal matrix which reduces H,tHn to the diagonal form
D, then

(2.22)

so from (2.9b),

(2.23)

Thus,

(2.24)

HtH T,tD Tn

y.,,(.) 1 T,t[i (D, + eI)-lDn]Tn.

lim e2;n(e) T,,t(I Un) T,.,

Combining (2.24) and (2.17), we see that

(2.25) A. T,,t(I U,) T,.

Furthermore,

(2.26)

But

lira -1 [e2;(e) An] B TntVn T,.
e-O

thereby establishing (2.16).
The matrices A, defined in (2.15), have a useful interpretation. If one

H,tH,.,B,., TntDnVn T, T,, U,., T,, I A, T,,tV,D, Tn B,H,tH,
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were to orthogonalize the set of vectors hi, h2, "", hn by the Gram-
Schmidt orthogonalization, (in the given order) the jth orthogonM vector
in the set would be nonzero if and only if hj were linearly independent of
hi, h., h._l. If the nonzero vectors in the orthogonMized set are
normalized and the entire set of zero and unit vectors denoted by 1.}.%,
then it turns out that

Aj_h Aj_h .
In fact, I A. is, for each j, the operator that projects any vector onto the
subspace spanned by h, h2, h. This we state as follows.
THEOREM 2.5. Let hl, h2, hn ,... be a sequence of m-dimensional

vectors, and let be the jth orthonormal vector obtained by the Gram-Schmidt
orthogonalization

h k(kth)
k=l

h (k h)
k--1

if hj is a linear combination of h h
h-,

otherwise.

Let An be a sequence of matrices defined inductively by the recursion

[A h+][A hn+] if hn+ is not a linear combination of
A+ hn+l An h+ h, hn

An, otherwise,

where A is the identity matrix.
Then for every n >= 1,

I A 99,

so that for any vector y, (I An)y is the projection of y onto the linear mani-

fold spanned by hi, hn
Proof. We proceed by induction. The assertion is true for n 1. If the

assertion is true up to n, then Anhn+ 0 if and only if

hn+l q](q1 hn+l),

which is true if and only if hn+l is a linear combination of the vectors
hi, hn Under the induction hypothesis,

Ahn+ hn+ "(qi hn+l).
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Thus

0 if h+ is a linear combination of the vec-
A, An+l tors hi, h,

,.+l’+t, otherwise,

so that

(I- An+l) (l- A.) -t-++,

proving the assertion.

3. Least squares with constraints. In the last section, we showed how a
least squares estimator can be computed in "real time" as the data roll in.
In many applications, it is necessary that the least squares estimator be
computed subject to certain linear constraints. That is to say, instead of
choosing X to minimize

(3.1) Z H,X [z(j) hjtX]2,

one wishes to choose X subject to constraints of the form

(3.2) gtX w(i), i 1, 2,..., k,

so as to minimize (3.1). (Here, the g are a sequence of given vectors and
w(i) are given scalars.)
We will show that the problem of minimizing (3.1) subject to constraints

of the form (3.2) can be reduced to the problem of minimizing an expression
of the form (3.1) (with different h vectors) subject to no constraints.
Furthermore, the relationship between the "new" h-vectors and the "old"
ones is a straightforward (easily computed) one.
We begin by pointing out that the problem of minimizing Z HX

subject to the constraints GX W (where G is a matrix and W is pre-
scribed vector) is reducible to one where W is zero.

For, let X0 be any solution of the equation GX W. Then X minimizes

Z- HX II (Z- HXo) H(X- Xo)ll

subieet to the constraint GX IrK if and only if Y X X0 minimizes
z* H g subieet to the constraint G Y 0 (where Z* Z HXo).

So, if Y* minimizes z* H Y II" subject to G Y 0, then X* Y* +X0
minimizes Z HX subject to GX W. For this reason, we will always
take W equal to zero in the sequel.

The constraints GX 0 dictate that X must be orthogonal to the rows of
G. Let the row vectors of G be denoted by g, g., g. If we orthogonal-
ize these vectors (as in Theorem 2.5) and then choose an orthonormal basis
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for the remainder of the space (call this basis q+l, era), then the set
of X’s satisfying GX 0 is the same as the set of X’s which are linear com-
binations of em+l,

To put it another way, the set of X’s satisfying GX 0 is the same as the
set of X’s which are orthogonal to g, g2, g, which, in turn, is the
same as the set of X’s of the form X A Y, where I A is the proiection
onto the linear subspace spanned by gl, g2, g. This argument is the
substance of the next theorem.
THEOREM 3.1. Let H by the n X m matrix whose jth row vector is

ht, j 1, 2, n, and let Gk be the lc X m matrix whose jth row vector is
gj,3 1,2, k.

Let I A be the matrix which projects onto the linear subspace spanned by
g, g2, ..., g, and let H= be the n m matrix whose jth row vector is

t Ah) ,j= 1,2, ...,n.
Let be the vector of minimum norm among those which minimize
Z= Y (i.e., the minimum norm solution of the normal equations
H Y BZn

Then minimizes Z, HX subject to the constraints GX O.
Proof. As was mentioned above, the set of X’s for which GX 0 is the

same as the set of X’s which are of the form X AY for some Y, where
I A is the projection onto the set gx, g2, g and is given.inductively
by Theorem 2.5. Thus

inf Z,-HX][ inf inf Zn-HX] inf[Z-HAY.
OkX=O Y X=AkY Y

ButB. HA, sothatif Yminimizesl[g- IYll, thenX AY
minimizes Z, H,X subject to the constraints GX 0. By Theorem
2.1,

lira t -- Z(Hn H + d)
eO

is the vector of minimum norm among those which minimize
By Lemma ld,

lira + eI) Zn lira AktHn (nn + I)H (HnHn - --Zn
0

Since A is a projection,

so that

A A A,

A lim A2Hnt(InIint -- el)--iZn ?n

Thus, X ’n minimizes Z HnX subject to GX 0, as asserted.
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From the point of view of "real time" computation, one would proceed
as follows. In advance of the data acquisition, one would use the constraint
vectors, gl, g2, gl to compute the matrices A1, A, etc. Accord-
ing to Theorem 2.5, A0 I, and for j 0, lc 1,

A. if g’+l is a linear combination
of g ,g.

[Ag+l] [Ajgj+l]A. otherwise.
g}+ Aigy+

This procedure terminates when Ak is obtained. Then, in "real time"
(i.e., as the data occurs) one applies AI to the regression vectors hn to ob-
tain the regression vectors/n, and . is obtained recursively according to
the iterations (2.12)-(2.14), where hn is replaced throughout by /n.

4. Residual errors. After one has computed a least squares estimate
(either constrained or unconstrained) it is often desired to evaluate the
residual error. That is to say, one wishes to evaluate the expression

E inf z, H,X
X

in the unconstrained case and

/n inf Zn- ItnX [2 inf Xn_ /-n Y [[2
GxO Y

in the constrained case.
This type of computation is at the very heart of linear regression and the

analysis of vriance. In general, a model of the form Z, HnX -k V is
assumed for the observations Z,. (where V is the vector of measurement
errors), nd one compares this model with one that stipulates that a set of
linear relationships (of the form GX O) exists among the components of
X. In order to decide which model fits best, the residuals

En inf[[Z- HnXI] and /n inf [IZ- HXll
X GX=O

must be compared und if Lheir ratio is "unduly" large (or small) one model
is accepted in favor of the other.

The obvious computational approach is not entirely satisfactory if a run-

ning (real time) evaluation of E and/or/ are/is required. By this, we
mean that the technique of substituting the least squares estimator for X
into the expression Z HX becomes increasingly tedious as the
number of observations (and hence the dimensionality of Z) grows in-
creasingly large.

If one wishes to perform a sequential analysis of variance, it is evident
that a computational method which allows E+ (the residual error based
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upon n + 1 observations) to be computed in a convenient fashion from En
(the residual error based upon n observations) will be of great practical
importance.

In this section we will prove the following.
THEOREM 4.1. Let z(1), z(2), be a sequence of real numbers and let

hi, h., be a sequence of m-dimensional vectors. Let H, be the n X m
matrix whose jth row is hyt, j 1, 2, n, and let Z, be the n-vector whose
components are z(1), z(2), z(n). For each n, let

E, inf [IZ, H,X [[ Zn Hn2n ,
X

where ,, is the minimum norm solution of (2.1). Then, for every n,

E,+ E +
[z(n + 1) h.+iX,]
1+ h,+B,h,+l if hn+ is a linear combination of

h, h2, ,h,
otherwise,

where f(, and B, are defined inductively in Theorem 2.4.
Before embarking upon the proof of this theorem, we point out that/,

(the residual squared error in the constrained case) is computed in exactly
the same fashion. For by Theorem 3.1,

/n inf Z,,, H.X inf Zn InX 2,
GX--O X

where/, is the n X m matrix whose jth row is ]t (defined in Theorem 3.1 ).
Hence, the results of Theorem 4.1 apply to the constrained minimization if
H and its rows hy are replaced throughout by/n and/.t, respectively.

Proof. The proof follows directly from the recursions (2.12)-(2.15).
Indeed, since we can write H as a partitioned matrix

we see from (2.12), that

--t-(4.1) H.2. m h,

Thus,

(4.2)

FH,,-.K,,1+ ----- [z(n)
L hnKn ..]

Z,,- H,3, -t-

We now treat two cases.
Case 1. h is not a linear combination of h h

(n) h,

.-, hn_l. In this case,
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by (2.13),
A.-lhgn

Since A,,_lh 0 for j 1, 2, n 1 (see Theorem 2.5), we find that
H,_K, 0. Consequently,

so that

E, Z,, H,2. Zn-1 Hn-ln-1 En_l,

which establishes Case 1.
Case 2. h, is a linear combination of h, h2,

A_hn 0 (see Theorem 2.5), so that

Bn-lhKs
1 hjBn_h"

By (2.2) of Theorem 2.1 and Lemma la,

H._2._ P(Hn-1)Zn-1,

so that by (4.2),

(4.3)

(4.4)

hn_l. In this case

By Lemma l c,

(4.5) (I P(Hn_) tH,_l O.

Furthermore, it is easy to show, using (2.22) and (2.26), that

B,H, H,B B,(4.6)

Combining (4.3)-(4.6), we then see that for Case 2,

h, Xn-1]E, 11Z, H,2, E- + [z(n) "
1 --{- hntBn_lh,
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5. Weighted and constrained least squares. In 3 we described a method
whereby the computation of constrained least squares estimators could be
reduced to the computation of unconstrained least squares estimators. An
essential feature of the technique was the necessity to specify the constraints
in advance of the data acquisition so that the vectors/, could be computed
from the vectors hi either before or during the "real time" computation
period (see Theorem 3.1).
Under certain circumstances this method has shortcomings. In some

situations, one may wish to collect all the data and, after all the data is in,
compute the least squares estimator subject to a succession of progressively
more restrictive conditions. By examining the associated residual errors,
one can then make judgments about the reasonableness of the constraints
in the light of the available data. Since the method described in Theorem 3.1
requires that the constraints be incorporated into the real time computation
scheme, there is no way of experimenting with various constraints unless
one is willing to carry on as many parallel computations as there are sets of
constraints (i.e., one for every G matrix).
Another pertinent objection to our method centers about the fact that

every h-vector must be modified if one wishes to compute a running-vMue
of the constrained least squares estimator. There is, however, another way
of doing things that overcomes this difficulty and we introduce this method
by considering an estimation problem in which one observes a sequence of
real random variables, z(1), z(2), z(n), where each observation is of
the form

z(j) htX + v(j), j= 1,2,...,n.

The vectors hi are known, while the v(j) are independent and normally dis-
tributed with variances

It is well known that the minimum variance (in each component) un-
biased estimator of X is, in this case, the weighted least squares estimator of
X(i.e., the value of X which minimizes

(5.1)

But

z.- 1 [z(j)En(X) h X].
]=1 o’.i

(5.2) E,,(X) z(j) h/ x [z*(j) htX],
where

, z(j)
z (j)
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and

hi* hi

Thus 2., the value of X which minimizes E,(X), satisfies the recursion
(2.12)-(2.15) (with stars affixed to the z’s and h’s). Replacing z*(j) by
z(j)/(rj and h.* by h/o-i, we obtain the appropriate recursion for -n. This
we state as a theorem.
THEOREM 5.1. Let z(1), z(2), be a sequence of real numbers and let

hi, h. be a sequence of m-dimensional vectors. Define

2n 2n--1 + Kn[g(n) hnt2n_l],
(5.3a)

20 0,

and

(5.3b) En En-1

where

(5.4)

(55) An

(z(n) hnXn-1)
a -- h,tBn_lh

if h, is not a linear
combination of hi,"

otherwise,

(5.6)

An-lhn

B,-h,
O’n -- hntBn_hn

An-1-
[nn-lhn][nn-lhn]t

hntA_h,

An-l,

if hn is not a linear combination of h,
h2 hn-1

otherwise,

if h, is not a linear combination

otherwise,

[Bn- hn][An-t hn] -J- [An-t h,][Bn-t hn]
htAn_l h,_

O’n T tn n--1 tn

-(h-A--_-ff) [An-i hn][An- h,]

o,3 + h,JB h,

if hn is not a
linear com-
bination of
hl ., hn-
otherwise,
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with the initial conditions

Ao I, Bo O.

and

A (z(j) h/X)
i=1 o’j

hX,)
]=1 oj

is the associated (minimal) residual squared error, provided the o- are all
positive.
The minimum variance property of weighted least squares estimators

forms ample justification for weighting each term in the sum (5.1) by its
"reliability" (the reciproval of its variance). If one were to push this idea to
the limit, one would be tempted to assign infinite weight to "perfectly
reliable" observations. To be explicit, suppose that one knew with certainty
that X satisfied the constraint

hitX z(j)

for some j. This is like saying that

z(j) h/X + v(j),

where v(j) has mean zero and variance zero. In the light of the preceding
discussion, it seems reasonable to think that the constraint can be treated
like a fictitious observation with zero variance, in so far as least squares
theory is concerned, and that the presence of a set of consistent constraints
can be incorporated into an unconstrained least squares model by passing
to the limit suitable (i.e., by letting appropriate variances approach zero).

This idea is indeed valid. In fact, we will show that constraints can be
treated as fictitious observations having zero variance in so far as the re-
cursions (5.3)-(5.6) are concerned. The proof of this fact is quite intricate
and relies heavily on certain properties of matrix pseudo-inverses. So, we
digress momentarily to state, without proof, the results which will be
needed. A full discussion (with proofs) of these results can be found in [1].

DEFINITION. For any rectangular matrix H, the matrix

H* lim (HtH + eI)-lH

always exists and is called the pseudo-inverse of H.
The pseudo-inverse of H enjoys the following properties"

P1. HH* is the operator which projects onto the range of H.

Then for every n, minimizes
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P2. HH is the operator which projects onto the range of Ht.
P3. For any vector Z, the vector H*Z is the minimum norm solution
of the equation

HtHX HtZ,
and hence is the vector of minimum norm among those which minimize
Z HX :.

P4. Y HX if and only if Y HH*Y and X H*Y (I H’H)V for
some V.
P5. The ranges of the matrices H*, H and HtH are identicM.
P6. (HtH)*= H*(HHt)H Ht(HHt)(H).
P7. HH*H H.
PS. (HtH)*Htx 0 if and only if Htx O.
P9. (HtH)*y 0 if and only if Hy O.
P10. H*= (HtH)Ht= Ht(HHt)*.
Pll. If H is a projection, H* H.
(The ambitious reader can amuse himself by deriving P1-P11 from the
results of Lemma 1 in 2.)
We point out that H is exactly the so-called Penrose-pseudo-inverse of

H. This is so because the Penrose-pseudo-inverse (cf. [6]) of matrix His
the unique solution of the equations,

(a) HXH H,
(b) XHX= X,
(e) (HX)= HX,
(d) (XH) t= XH.

X H satisfies (a) by P7. By P1 and P2, HH and HH are projections,
therefore are symmetric; so (c) and (d) hold.

Finally, by P10,

and by P2,

Therefore,

(HH)H*= (H*H)Ht(HHt)

H*HHt= Ht.

(H’H)H* H*,
establishing (b).

In the remainder of this section, our program consists of nine main steps.
First, we will show that

[112n(,) Bn(,) 2 GtW + H,tZ,
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minimizes

}_ [z(j) htX] + , [w(j) gtX]2,

where Zn is the n-vector whose components are z(j), H is the n X m mtrix
whose row vectors are hj t, j 1, n, W is the -vector whose compo-
nents are w(j), G is the k X m mtrix whose rows are gt, nd

1B(h) GtG + HH

Second, we will point out that B(k) satisfies a recursion like (2.14)-
(2.15), with the initial conditions replaced by

Bo( X k:[GtG], Ao I GG.
Third, we will prove that Bn(h) Bn 0(2) as X 0, where B, saris-

lies a recursion similar to (2.14)-(2.15) with the initial conditions B0 0,
Ao I G*G.

Fourth, we will show that

t(H .)

(where H(I G*G)) satisfies the same recursion as B with the
same initial conditions. Hence, B B for every n, so that

Bn(X) ()* + O(X) as X 0.

Fifth, we then conclude that

?(x) B(x)H. Z
converges to

n]

nd by Theorem 3.1, this means that (), which minimizes

[z(j) hY]+ 1 [0 g/Y],

converges to a vector which minimizes

[z(j) hty]
j=l

subject to the constraints GY O.
Sixth, this permits us to establish the more general result, namely, that
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converges to a value which minimizes

[z (j) h/X]

subject to the constraints GX W.
Seventh, we will show that the residual error E.(X), which is associated

with (X), converges to the residual error E associated with ..
Eighth, we then show that a recursion for) is obtainable by writing the

recursion for (k) and setting 0 throughout. The recursion for E
s obtained from the recursion for E,(X) in the same way.

Ninth, finally, we will extend the results to the general case of constrained,
weighted least squares.
We begin by defining the matrix

and the vector

Then, the vector

(5.7)

Lz.J

2"(X) [F,’(X)F.(X)]tF.t(X)U,(X)
minimizes

(5.s) u,(x) F..(X)X =,
(We have used P3 and P10.) But (5.8) is exactly equal to

1(5.9) Z, H. X 4- W GX ,
(5.10)

If we let

and (5.7) is exactly the same as

I x2.(x) # a’a + H,tH,]*[ GtW + HntZnI
[ I1 G tHn(5.11) B(X) . G-l- H

where Bo(k) X:[GtG], we arrive at the first important result:
LEMMA 2. The vector

1 Ht2n(X) gn()) # atw -- Zn
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minimizes

1z. H, X + w ax 11,

In [1, Theorem 4.2] it is shown that B(,) satisfies a recursion which is
exactly like the one described in equations (2.14)-(2.15), except for some
differences in notation. For the sake of future reference, we will spell out
the recursion"
LEMMA 3. If

(x) a’a+HH
and if the row vecor of G and H, are, repectivelg, g, g., ..., g; h,
h, ..., hn, hen for everg n,

(5.12) B,(h)

B,-t(X) [Bn-l(h)hn][An-i h,] + [A,-i h,l[B,,-(X)h,]’
hntA,_ h.

1 q- h,tBn-l(X)h,1(h,JA,_ h,)
[A,,- hn][A,,-

if h, is not a linear
combination of g
g g h

h,-1,

B,-(X) -[B’-*(X)h’][B"-*(X)h’lt
1 -t- hJB,_t(X)h,

otherwise,

where I A, is the projection onto the subspace spanned by g,
h hn and where An is defined inductively,

[A,-i h,][A,- hn] if h is not a linear
hJA,_l hn combination of

gl "", gk hi,An
IAn-1
A._

(5.13)

otherwise,

with the initial conditions

Bo(k) k(GtG), Ao I- G*G.

Since A,, is a projection, A,, A,, A, and so

(5.14) A,h (A,,h)t(A,h) hA,,h.

We will use this fact later on.
It is easy to show by induction that B,(k) converges to a limit and we

state this as follows.
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LEMMA 4. Bn (k) B, + 0(2) as -- 0, where B,, satisfies the recursion
(5.12) with the initial condition Bo 0 and A, satisfies the recursion (5.13)
with the initial condition Ao I G*G.
On the other hand, if we let f (I G*G)h, j 1, 2, and let
/ be the n X m matrix whose rows are ]1t, -th., ]t (i.e., /

I:I(I G’G)) and if we let

then, again by [1, Theorem 4.2], we find that for every n,/. satisfies the
recursion (2.14) with B_I replaced by/_1, hn replaced by ], and An-1
replaced by fin-i, where I fi,_ is the projection onto the subspace
spanned by /1, "", f-l. fi satisfies the recursion (2.15) with A_I
replaced by fi.-1 and h, replaced by/. The initial conditions are/0 0,
fi0 I. We are now in a position to prove:
LEMMA 5. For every n,

I1 J* + as -+ O,H,(5.16)

where IzL, H(I G’G).
Proof. We will show that/n (defined by (5.15)) satisfies the same re-

cursion as B (defined in Lemma 4). To do this it suffices to prove that
(a) ]n is a linear combination of/, ,/n_ if and only if h is linear
combination of g, ..., gk, h, ..., h,_,
(b) 2:_/ A,_h and ffi_n_i/n hnA_h,, where A satisfies
(5.13),
C r,--lfn .-lhn and

(a) ], is a linear combination of ]1, f,-1 if and only if

(5.17) f, -tHn_iY,

for some Y1. The last is true if

(5.18) (I- G*G)h. (I G*G)Hn_IYI:
Since I G*G is projection, we have (I G’G)* (I G’G) by Pll
and so, by P4, (5.18) holds if and only if

(5.19) h (I GtG)H_Y + G*GY.
for some Y:. But (5.19) holds if and only if

Hn_IY1 -- G*GY(5.20) h

for some Y. Equation (5.20) says that h is a linear combination of a

Hn-1 and a vector in the range of G*G. By P2, G*Gvector in the range of
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is the proiection onto the range of G so that the range of GtG coincides
with the range of Gt. Combining the results of (5.17)-(5.20),/ is a linear
combination of/1., "", /-1 if and only if h is a linear combination of

Hn_l and G, i.e., if nd only if h is linear corn-vectors in the rnges of
bintion of the vectors h, h_, g, g, which spn the rnges of
the mtrices H_ nd G.

(b) o (I- GG)h Aoh,

nd it is esy to show by induction that Ahn+ Ah+ for every n.

A nd re projections so that by (5.14),

h, A,_h A,_h,

_
h _h

(c) By definition, B (.t)* nd by P6,

Since H(I- GiG) nd (I- GtG) (I- GG), we see that
H I GtG) so that , I GtG) Consequently, B+
Bh,+ nd

(d) - -h+.Bh+ h+Bh+ + th,+l

(h+)th+ h+Bh,+.

This establishes the lemm.
Actually, more generM result follows from the lst lemm. Although we

do not use it in the sequel, it is of general interest.
THEOREM 5.2. If A and B are nonnegative definite matrices then

(a’) + V [( )( *)1 + (x) a x o.

Proof. Wrige A HH, where H H A1/, and B GG, where
G G B/. By Lemma

A B [(I G*G)(HtH)(I G*G)]* + O(h).

Since

G*G [B1/2]B1/2
is the projection onto the range of B/2 and since the range of B1/ coincides
with the range of B, we see that G*G B*B. This establishes the assertion.
To return to the mainstream, let ’(k) Bn(h)HntZn Lemma 2

tells us that n(k) Ininimizes

1Z, H,Y .+ GY
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while Lemma 5 tells that

(5.22) ?() --+ , B,H- tZ
as -+ 0. Since [,(I GtG)= [, (see part (c) of the proof of Lemma 5),
it follows that nIIn nUnt, SO that by P10 and (5.15),

(5.23) - //tz- /tZ.

By Theorem 3.1 and P3, minimizes Z HnY [[ subject to the con-
straints GY 0. Thus, we obtain"
LEMMA 6. Let

where

minimizes

" lim

1 GtG)(X) (StH - HtZ

1z HY 112 + GY

Then minimizes Z HY subject to the constraints GY O.
It is now relatively easy to prove the more general result for the case of

inhomogeneous constraints.
LEMMA 7. Let

where

minimizes

2 lira

1 GtG)+(HtZ+ 1GtW)
1

Then 2 minimizes Z HX subject to the constraints GX W, provided
the constraints are consistent (i.e., provided that there is at least one solution
to the constraint equation).

Proof. It suffices to show that

(5.25) 1 GtG)*(HtH+I GtG) G =Gt.
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For, if (5.25) holds, then since (by P7)

(5.25a) GtGG GG*G) G,
we have

1_ (HH +1 GtG) Gt 1 GtG)
Consequently,

where

1 )*(HtZ 1 GtW)
1 GtG) (HtZ,) + Xo,(HtH --[--

(5.27) Z* Z HXo
and X0 G*W. Hence, () -- " + X0, where minimizes Z* HY
subject to GY O. But in 3, we showed that minimizes
subject to GX W if and only if ) + X*, where X* is any vector
satisfying the constraints, and minimizes (Z HX*) HY sub-
ject to GY O. Since

lira
X+0

is precisely of this form, the lemma follows.
To prove (5.25), we point out that the range of G* is the same as the

range of GtG (by Ph), so that every column of G* is in the range of GtG.
By P2,

HtH + GtG HH + GtG R()

is the projection onto the range of

1HtH + GtG,

which contains the range of GtG. Consequently, the columns of G are (and
hence G* is) left unchanged by the multiplication by R(X).
The corresponding result for residual errors follows easily.
LEMMA 8. Let 2(X) and f be as defined in Lemma 7, let

1E(X) Z H2(X)II + . W
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and let E 11Z H2 2. If the constraint equation GX W has a solution,
then

lim E(X) E.

Proof. It suffices to show that

1

By (5.24), (5.25), (5.25a), and the fact that W GG*W (by P),

W G2(X) a HtH + Gta HtHG*W

(G HtH + a,a H[HG*W Z].

Thus, by Lemma 5,

(5.29) w a2(x) a(B)*H[Ha*W Zl + O(x) as x 0.

By P6,

where M (t)*(Bt)*, so that G(BB) 0 (by P7). Whence,
W a2(X) O(X), so that W 2(X)[ o(X).
The results established so far allow us to derive a recursion for a con-

strained least squares estimator and its associated residual error.
TEOnEM 5.3. Let S be a finite set of integers, let hi, h be a sequence

of m-dimensional vectors, let z(1), z(2), be a sequence of real numbers
and let and E, be defined inductively by (5.3)-(5.6). Let

{1,2, ,n} fiS

and

Tn {1,2, ,n}
if

for j S,
forj S,

then for every n, 2n minimizes

[z(j)
J Tn
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subject to the constraints

and

htX z(j), j S,

E [z(j) hjt.(n]
JE Tn

is the associated residual error, provided that the set of vectors hjlj
are linearly independent.

Proof. Let J(X) and E(X) be defined by the recursion (5.3)-(5.6)
with

ifj S.

By Theorem 2.4, .() is the unique vector of minimum norm among
those which minimize

(5.30) [z(j) htX] + z(j) h x

and by Theorem 4.1, E() is its associated residual error. Let Z be the
vector whose components are z(j), j T, let H be the matrix whose row
ectors are h, j T, let W be the vector whose components are z(j),
j S, and let Gn be the matrix whose row vectors are h, j S. Let

(5.31) F(X)

Since 2(X) is the unique vector of minimum norm among those which
minimize (5.30), we have by Theorem 2.1 that

(5.32) 2(X) lira (F(X)F(X) + eI)-F(X)U(X);
e0

and by the definition of F*(X), we see then that

(5.33) 2n(X) F*(X)U(X).
By P10,

(5.34)

or equivalently,

2(x) aa + a+ H’Z

Now, consider he reeursions (5.8)-(5.6) for 2(X). If we examine ghe
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associated recursion for B, we see by [1, Theorem 4.2] that

1 HB B(X) GG + g

for every n and that I An is the projection of h onto the subspace spanned
by ht, h_.
By Lemma 7,

n lim
0

exists and minimizes Z HnX subject to GX W. Furthermore,

lira X_(k) + K(k)[z(n) htX_(k)]},

nd K(k) is defined by (5.4) with

z 2 ifn S.

It therefore suces to show that

Blira h n_(k)h > 0
(5.35) 0

if n S and h is linear combination of h, h,_.

For, if (5.35) holds, then

2 lim n(X)
X0

satisfies the same reeursion as 2,(X) with X 0, and E, satisfies the same
reeursion as E,(X) with X 0. To prove (5.35), we proceed as follows"
By Lemma 5,

h B_(k)h f (H_IH_) h,(5.36) lira -t

0

where

(5.37) -1 H_ I G_G_

und , (I G_G_)hn Furthermore, by the proof of Lemma 5,
h,, is linear combination of h, h_ if nd only if there is a vector
y such that

(5.38) f -tH_y.

But by P8, (H-tn_lH_-)*n-lY 0 only if _y 0, so that (H_H_)*f,-
h0 only if f.. 0. But 0 if and only if hn G_G_ n, i.e., if and

only if h. is in the range of G_ (which is spanned by the set {hi [j S-I} ).
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This cannot happen if n t-n, since we have assumed that {hlj S} is a
linearly independent set and hence has no linearly dependent subset.
Thus, (/t_l/n_l)*] 0, which implies

(5.39) (Hn_lH_l) h > 0.

Combining (5.36) and (5.39) we obtain (5.35).
The general case of weighted least squares subieet to constraints follows

in the obvious way.
THEOREM 5.4. Let S be a finite set of integers, and let and E, be as

defined in Theorem 5.3 except that

] (0 if j S,
r. >0 ifjS.

Then for every n, 2n minimizes

1 [z(j) htX]j T Tj-"--2

subject to the constraints

htX z(j),

and

E r 1 [z(j) h X]
TJ

is the associated residual error, provided that the vectors in the set h j S}
are linearly independent.

Proof. By letting hi* hj/r and z*(j) z(j)/r for j S, we reduce
the problem of minimizing

1 [z(j) hjtX]
J Tn Tj

subject to the constraints, to that of minimizing

[z*(j) h*tX]
JE Tn

subieet to the same constraints. The solution to this problem along with its
residual error is given (in terms of the z*(j)’s and h.*’s) by Theorem 5.3.
The present result is obtained when the z*(j)’s are replaced by z(j)/r
and the h*’s are replaced by

This result completely justifies the intuitive feeling that we described at
the beginnning of 5. Constraints can indeed be treated as though they were
observations having zero variance in so far as the least squares recursion is
concerned.
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The time and order of introduction of the linear constraints is immaterial
provided only that they are noncontradictory (the linear independence
assumption guarantees this). Thus, one can collect all the data and in-
troduce the constraints afterwards, one at a time. On the other hand, if one
wishes a running ("real time") estimate subject to the constraints gjtX

w(j),j 1,2, ,/c, one would let Sbethe set {1, 2, ,/c}. In advance
of the actual data acquisition, one would compute X1, Xk according to
(5.3)-(5.6) with z 0, h. g., and z(j) w(j), j 1, 2,
The terminal values, k, / and, would be stored; and then, when the
actual data were taken, the iteration (5.3)-(5.6) would again, be employed
(this time with positive z’s).
Compare this method with the method of Theorem 3.1 in a problem of

ordinary (unweighted) least squares, subject to the constraints gtX w(j),
j 1, ..., /. Under the method of Theorem 3.1, one must first find
solution, , to the constraint equations, so that the constraints can be
reduced to homogeneous ones (see the beginning of 3). Then, every
regression vector h. has to be modified (either before or during the data
acquisition) and the iteration is carried out with every h- replaced by
and every z(j) replaced by (j) z(j) h .
The method of Theorem 5.4, on the other hand, would have no effect
o the "real time" computation (2.12)-(2.15) except through the initial
conditions on 0, B0, and A0. Whereas the unconstrained least squares
estimator starts with 0 0, B0 0, and A0 I, the constrained es-

timator "starts" with 0 X, B0 B, and A0 A. All subsequent
steps of the iteration are carried out in strict accordance with (2.12)-(2.15)
except that the iterations are conditioned on whether or not hn is a linear
combination of gl, g, g, h, h_.
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WEAKENED HYPOTHESES FOR THE VARIATIONAL PROBLEM
CONSIDERED BY HESTENES*

T. GUINN
1. Introduction. Recently Hestenes [1] has obtained necessary conditions

for a generalization of the classic problem of Bolza. Since the extensions
are of such a nature as to require reformulation of the method of proof, this
problem will be referred to here as the problem of Hestenes.
The proof given by Hestenes for this problem is in both variational and

control formulations and the equivMence of these is shown. Since in the
problem of Hestenes, inequality constraints which jointly involve both
control and state variables are given explicitly, necessary conditions are
derived for piecewise continuous control variables. Here it is shown that if
these constraints are not stated explicitly but instead are given by de-
scribing the properties of a certain region, necessary conditions can be ob-
rained under somewhat weaker hypotheses. As a consequence, the resulting
necessary conditions hold only almost everywhere and the development is
considerably more complicated. The results include as a special case those
obtained by the Pontryagin school [2] for a less general problem under the
assumption that the controls are bounded and measurable.

Since the proof here closely parallels that of Hestenes, we avoid repeti-
tion by assuming that the reader has in hand a copy of [1]. All references
will be to that paper unless otherwise stated.

2. Formulation of the problem. The problem considered is that of mini-
mizing a function

Io(x) go(b) + Lo(t, x(t), u(t), b) dr,

in a class of arcs

ux’zi(t), (t),b, <- t<= ;i= 1,...,n;tc= 1,. ,re;z= 1, ,r;

satisfying differential equations

(2.1) 2i(t) f(t, x(t), u(t), b),
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a set of initial and terminal conditions

(2.3) t= T(D),

nd set of isoperimetric relations

(2.4) I(x) <=0, l <=.), <=. p I.(x) =0, p’ <.), <= p,

where

x(t) X(b), s 1,2,

h(t, x, u(t), b)] S(t)

hold for (t, x, u(t), b) on R.

That under these assumptions the system (2.1) has solutions with properties
used subsequently is shown in [3].
Now let u(t) be function satisfying (d). A point will be called an

ordinary point for u(t), or interchangeably for h(t, , u(t), ), if it is
point of definition of u(t) und

lim
1 f+-,o - h(t’ ’ u(t), ) dt h(g, , u(), ), j O, 1, n + p.

We now distinguish an arc in R s

< < ,x0 Xo(t), u0 (t), b0,

t2

Iv(x) g(b) q- L(t, x(t), u(t), b) dt.

Note this corresponds to the problem given in [1, 2] except for the in-
equalities (2.2) which we have here deleted.
We assume that T8(b), XiS(b), g (b), g(b) have continuous partial

derivatives with respect to b.
Let R be a region in (t, x, u, b)-space which is convex in x and b for each

t. Set h L0, h fi, h"+ L, and assume the following hold for
j 0, 1, ,n + p:

() h(t, x, u, b) is defined on R,
(b) h is continuous in x, u, and b for fixed nd locally
integrable in for fixed x, u, and b,

(2.5) (c) the prtial derivatives of h with respect to x, u, b
exist and satisfy (b),
(d) for ech function u(t) for which h(t, x, u, b) is locally
intcgrable for fixed x and b there is locally integrable function
S(t) such that

h(t, x, u(t), b) <= S(t)
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where uo(t) is a function defined on =< __< for which

h(t, x, uo(t), bo), j O, 1, ..., n + p,

satisfy (2.5) as functions of and x, and xo(t) is a solution of
.ix f(t, x, uo(t), bo), T(bo), s 1, 2.

Let R0 be a subset of R containing x0. Let N be neighborhood of x0
in R and let Mo be the intersection of the projections of R0 and N on
(t, x, b)-space. We assume here that R0 has the property that there exists
set of functions Uo(t, x, b) defined for every point of Mo such that

(i) Uok(t, xo(t), bo) uo(t),
(2.6) (ii) (t, x, U0(t, x, b), b) is in R0 for almost all t,

(iii) the functions

rk OVo
ox (t, xo(t), bo),

B(t) L + L.ur,
where x+ b, exist and together with h’, j 1, -..,
n + p, sutisfy (2.5b).

Furthermore, we require that for every point (, 2, , ) in R0, except
possibly for in a set of linear measure zero, there are neighborhood M
of (, 2, ) in (t, x, b)-space nd a set of functions U(t, x, b) stisfying
(ii) and (iii) for which U(i, 2, ) and is an ordinary point for U.
An element t, x, u, b) will be clled admissible if it is in R0. A funct ion

u(t) will be clled admissible if it is defined for _<_ <= , hi[t, x, u(t), b]
is integrable for fixed x and b, and solutions x (t) of

ci= f[t, x, u(t), b], t" T(D), <= .<= ,
are such that [t, x(t), u(t), b] are in R0.

If x(t) is a solution of (2.1) for admissible u u(t) such that x(i) 4,
where is an ordinary point for f[t, 4, u(t), hi, then is also an ordinary
point for if[t, x(t), u(t), b], us one readily verifies. Also for any admissible
u(t), the set of ordinary points has full measure.
An arc

x" x(t), u’(t), b, <-_ <= 2,
will be called admissible if its elements It, x(t), u(t), b] are in R0. We
denote by B the class of admissible arcs satisfying (2.1), (2.3) and (2.4).
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3. The basic theorem. The reder is referred to [1, 5] which will be
followed now in detail. No changes re required through to the statement
of Theorem 5.1 except that differential equations in qi nd Po" re stisfied
only lmost everywhere. It is clear the functions F re integmble long x0.

Then under the hypothesis of our 2, we hve"
THEOREM 3.1. The conclusions of Theorem 5.1 hold excep ha (ii) holds

a all ordinary points of uo() on , and (iii) holds if and
are ordinary points.
We now turn to [1, 7] for the proof. Here K is the class of vectors s

in [1, (7.1)] except that now must be n ordinary point for u0() rther
thn point of continuity. The remaining proof except for Lemm 7.1
is unchanged, keeping in mind the new definition of K. Hence if Lemm 7.1
still holds, our Theorem 3.1 hs been proved.

Following the proof of Lemm 7.1, the funcions U(t, x, b) exist by
hypothesis. The construction through [1, (7.7)] is unchanged. That the
functions f(e) re continuous is clear. Wht must now be shown to com-

plete the proof is that the functions f(e) hve the required prtil deriv-
rives. To show this consider

N

+ (E(t, x(t, ), v(t, x, ), b())
j=l Tj

(.) F(t, x0(), u0(t), b())) d % /[
j=l Tjej

F(t, x0(t), u0(t), b())) dt /[ I,

where ke in the second term on the right hnd side is no summed on j
nd T+ . On the interval (T, T e), x(t, e) is the solution of

f(t, x, U(t, x, e), b(e) ),

nd, on the interval (T + e, T+), is the solution of

’ (t, x, 0(t), b()),

where x (t, e) X (b (e)) nd the initial conditions for ech interval re
chosen to be the final vlue of the solution on the previous interval.
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A term from the first sum is dominated by

frr+ Fo(t, x(t, e), U(t, x, ), b(e))

!
F(t, xo(t), U(t, x, ), b(e)) dt /l e

Tj+j

-t- F(t, xo(t), U(t, x, ), b(e)
’T(.2)
F,(ts. xo(ts), us. b()) dtl/l

+ F,(t, xo(t), u0(t), b())

F, (t xo(t), uo(t), b (e) dt // e I + I + I.

Next term from the second sum is dominated by

where we use gha z(, 0) zo(). Now by [a, Theorem .1], (, e) has a
bounded difference quoieng wigh respee go age 0. Hence using (7.8),
where m() U0(, zo(), m()), we have immediagely ghag I 0 ag
e 0. Also I can be represenged as an integral of ghe same form as I
wih upper limi Ti + ei and 0(g) replaced by Ui(, z, e). Nsimaing

by the function S(t) given by (2.5d) nd gin using [3, Theorem 4.1] gives
I 0 t 0. Now Mso I I 0 since t is n ordinary point for both
uo(y) nd U(t, x, e). That the first term of the right hnd side is zero
follows from the fct that G(b) hs continuous prtiM deriwtives.
Hencef(e) hs differential t e 0 nd the proof of the lemm follows

from the definition of derived set given in [1, 6].
If the hypothesis of local integrbility with respect to is replaced by

joint continuity in (t, x, u, b), the set R0 is given by [1, (2.2)], and the
dmissible functions u(t) re tken to be piecewise continuous, the bove
reduces to the problem of Hestenes.
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4. A simplification. If we consider the case which corresponds to con-
straints [1, (2.2)] being functions of nd u lone the situation is consider-
bly simplified. In (2.5), prtil derivatives with respect to uk are no
longer required. Also R0 need only be a subregion of R with the property
that if (, 4, , ) is in R0, except possibly for in a set of measure zero,
there is function

uk(t), -- -<_ _-< + ,
for some > 0 such that for It 1 < the following hold for
j O, 1, ...,n + p"

(i) (t, x, u(t), b) is in R0 for Ix x01 " , Ib 1 < t,
(ii) for fixed x nd b, the function h(t, x, u(t), b) as well s

its prtil deriwtives with respect to x and b are(4.1) integrble in t,
(iii) u() ,
(iv) is an ordinary point for h(t, 4, u(t)).

Here we do not need to distinguish the rc x0 since admissible functions
re independent of x. Hence the functions r(t) given by (2.6) do not
appear and the resulting development is accordingly simplified s re a.lso
the estimates given in (3.2) nd (3.3) above.
II the cse corresponding to constraints [1, (2.2)] being functions of u

lone, the hypotheses (4.1) re trivially stisfied by the unction u(t) .-= .
This is the cse considered by the Pontrygin school in [2] where continuity
in ws ssumed for the functions L0, f, constraints of the form (2.4) did
not appear, nd dmissible controls were bounded and mesurble. They
Mso ssumed the range spce for dmissible controls to be Ha,usdorff.
Here no restrictions re mde directly on the controls or their rnge spce.
M1 restrictions on controls relate to their effect on the functions in which
they pper.
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VARIATIONAL PROBLEMS WITH UNBOUNDED CONTROLS*

1. Introduction. Let

J. WARGA

dx(1.1.1)
dt

5c(t) g(x(t), r(t) a.e. in T [to,

(1.1.2) (x(t), x(t)) B,

(1.1.3) x(t) A, T,

be given system of ordinary differential equations and restrictive con-
ditions, where x (x1, x), to < t, r(t) is a function from T to some
rbitmry set R, g(x, r) is defined for all (x, r) V X R, V is n open set
in Euclidean n-space E., A is closed set in V, nd B is closed set in
V X V. We shall suy that sequence S (r(t), x(t) )}.= is an approxi-
mate solution of system (1.1) if the xj(t) re absolutely continuous, the
r(t) and the x(t) stisfy (1.1.1) for ech j, the points x(to) and x(t)
converge to points xs(t0) and xs(h), respectively, sj -- , (x,(to), xs(h))

B, and for every positive the x(t) are in the e-neighborhood of A for all
und ll sufficiently lrge j.
We consider the problem of determining un approximate solution of

(1.1) that yields xs(h) inf xs,(t) mong all pproximate solutions S.
This problem has been considered by Young [13], [14] and McShane
[3], [4], [5] in the case where R and A are Euclidean spaces, and by Warg
[9], [10], [11], [12] and Gmkrelidze [2] in the cse where R is compact
Itausdorff spuce (nd, in prticulur, compact Euclidean set). Special
systems were considered by Neustadt [6], [7].

In the present note we ure concerned with problems defined by (1.1)
in the cse where R is not necessurily a Euclidean or u compact Huusdorff
spce and where the admissible curves may hve unbounded derivatives.
In such problems it ppers ppropriate to introduce "solutions" x(t)
that my be discontinuous functions of t. We shall define a class of problems
which admit "minimizing puramctric solution" (Assumptions 2.1 nd
3.1 and inequalities (2.2)) and we shall indicate (Theorem 3.2 and 3.3)
how this minimizing prametric solution cn be used to determine a
minimizing upproximte solution of (1.1). We shall also pply previous
results [9], [10] to derive necessary conditions satisfied by minimizing

* Received by the editors April 5, 1965, and in revised form June 29, 1965.
Research and Advanced Development Division, AVCO Corporation, 201 Lowell

Street, Wilmington, Massachusetts.
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parametric solution in the case A E. The more general necessary con-
ditions for the case where

A {xla’(x) _<_ 0, j 1, ..., ml
can be derived in a straightforward manner by applying the results of
[11] and [12].
Our approach is basically parametric. Its domain of applicability is

limited to problems in which the "competing" admissible curves x(t)
are of uniformly bounded lengths.

After these investigations were completed, the author received a report
of Rishel [8] on a related problem. Rishel derives necessary conditions for
minimum for cases where (in our notation)

r (u, v), g(z, r) gl(z, u) - vg2(u),

the vector control u(t) is bounded and restricted to a set U, the control
v(t) is a scalar nonnegative measure (which simulates the "limit" of a
scalar unbounded control), and a minimizing solution is a priori assumed
to exist and to satisfy . certain condition.

2. The parametrization. Henceforth, whenever we refer to a function
that is differentiable a.e. in T we shall mean an absolutely continuous func-
tion. This convention will apply, in particular, to solutions of differential
equations.
We first state eertin preliminary assumptions.
Assumption 2.1.
(2.1.1) There exists an approximate solution S l((t), a?.(t))}.l

of system (1.1).
(2.1.2) There exist positive constants c and c’ and a compact set

D in V such that

ft’l g(x(t) r(t))l dt <- c and x(t) D, T,

Cprovided r(t) and x(t) satisfy (1.1.1), x(tl) _<_ Xs (t) -V x(t) is in the
c’-neighborhood of A, and (x (t0), x (tl)) is in the c’-neighborhood of B.
Here g[ denotes the Euclidean length of g.

(2.1.3) There exists a constant such that

for all(r,x, 2) R V V.
We can easily verify that c -t- tl to is an upper bound of the lengths of

the "competing" admissible curves (t, x(t)) in the (t, x)-space.
Let now v(x, r)" V R -- E be a positive and continuous function of
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X for every r R, and let positive constants Cl and c be such that

v(x, r) < c. on V X R.(2.2) cl <-_
1 -[- g(x, r)

We consider the following system of differential equations and restrictive
conditions"

2(t) g(x(t), r(t) . e. in T,

1(2.3.1) (t) -dv(x(t), r(t)) . e. in T,

d(t) 0 m e. in T,

(2.3.2) t(t0) 0, t(tl) 1, (x(to), x(t)) B, x(t) A, T.

This system is formally obtained by djoining two differential equations
nd two boundary conditions to (1.1). We cannot, however, ssert s yet
that this system is equivalent to (1.1) since we hve not proved that the
function v(x(t), r(t)) is mesurble for every r(t) nd x(t) that stisfy
(1.1.1). We cnnot even ssert t present that this system hs any solu-
tions. We observe, however, that if there exists solution x(t) stisfying
the conditions of Assumption (2.1.2), then

a(t) a(to) a v(x(-), r(-)) dr;

hence

(2.4) 0 < c c(t- to) <= a <= c.(t- to) + cc c.

Furthermore, 0(t) is strictly increasing, hence is n increasing function of
0 on [0, 1], sy r(0). Let x(-(O)) (0), nd r(r(0)) p(0). Thus
system (2.3) is equiwlent to the system

d ’(0) ag((O), p(O)
a.e. in [0, 1],

d v((), (o))

dr a(2.5.1) r (0)
v((0), p(0))

a.e. in [0, 1],

da
a (0) 0 a.e. in [0, 1],

dO

(2.5.2) ((0),(1)) B, r(0) to, r(1) t, 8(0) A, 0 [0,1].

This last system has uniformly bounded right hand sides if we adjoin to
it the inequalities (2.4).
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3. The relaxed parametric solutions. We have introduced the system
(2.5) primarily for purposes of exposition and to motivate the procedure
that follows.

Let system (1.1) be given and let Assumption 2.1 be satisfied. Let
v(x, r) be a continuous and positive function on V for every r R, satisfying
inequalities (2.2). We require:
Assumption 3.1. There exists a constant c5 such that

(, r) (, r)
v(x, r) v(2, r)

1 1
v(x, r) v(, r)

Iv(x, r) v(, r) <= c5 Ix 2

for all(r,x, 4) R X V X V.
Let now

G(x) g_!x_,r) 1 ) R}[\v(x, ; v(x, r)
r E+I x V,

and let F(x) be the convex closure of G(x). We shall call the function
((0), r(0))" [0, 1] E+ relaxed parametric solution of system (1.1)
if there exists number a such thut c a c4,

(’(0), J(O)) F((O)) . e. in [0, 1],
a

.(0) A in [0, 1], -(0) to, -(1) tl, and ((0), (1)) B. A mini-
mizing parametric solution of system (1.1) is a relaxed parametric solu-
tion that minimizes 1(1).
THEOIEM 3.2. Let Assumptions 2.1 and 3.1 be satisfied and let v(x, r)

be continuous on V for every r R and satisfy (2.2), where c and c2 are
positive constants. Then there exists a minimizing parametric solution
((0), -(0)) of (1.1). Furthermore, there exist an approximate solution
S {r.(t), x.(t)}-l of (1.1) and a sequence {-j(0)}= of increasing func-
tions on [0, 1] such that -(0) to, .(1) h, j 1, 2,

I(o) x((o))l + I(o) () - 0 uniformly on [0, 1],

and 1(1) xsl(t) - xs,(t) for every approximate solution S’ of (1.1).
Proof. We first observe that if (t)" T -- R and (t)" T -- V satisfy

(1.1.1) then for every positive integer j there exist a piecewise constant
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control .(t)" T R and a function 2.(t)" T -- V that satisfy the relations

:i(t) g(i(t), i(t) a.e. in T,
1

12(t) Z’(t) =< , t T.

The proof of this statement is almost identical with the proof of [9, The-
orem 2.2, p. 113].
We next consider a sequence $1, $2, of approximate solutions of

(1.1) such that xsi(h) converges to infs xsl(h) and all the elements of the
S- satisfy the conditions of Assumption (2.1.2). Because of our previous
remark, we may assume that each control in S, $2, is piecewise con-
stant. We can construct, with elements of S, S, a sequence S*

{(r.(t), .(t))}.l that is an approximate solution of (1.1) and such
that xsl,(tl) inf,,
Now let

0.(t) v(x(,), r.()) d, j 1, , T,

and let aj O.(tl), Oj(t) Oj(t)/a. The functions 0.(t) and O(t) are
defined for each j and are continuous since the r.(t) are piecewise constant,
the function v.(x, r) is continuous in x, x(t) D for all T and
j 1, 2, and v(x(t), r(t)) is dominated by the integrable function
c(1 -[- g(x(t), r(t)) I). Furthermore, the O(t) are strictly increasing
by (2.2), and 0-(t0) 0 and O(t) 1. Thus the mapping O(t)" T --+ [0, 1]
has an inverse -(0)" [0, 1] --+ 7’ that is continuous and strictly increasing.
We now observe that the functions r(t), x(t), Oj(t), and a(t) a

satisfy (2.3.1). Thus the functions p.(O) r(-(O)), (0) x(-(O)),
,j(0), and a(0) a satisfy (2.5.1) hence

1_ (’(0), ’’(0)) F((O)) a. e. in [0, 1].
a-

Furthermore, .(0) D, to _-< .(0) __< h, and c. =< a- =< c for j 1, 2,...
and [0, 1], -() is arbitrarily close to A for every and every sufficiently
large j, and

(.(0), (1)) (xi(to), x(t)) - (x.(to), xs.(tl)) B.

It follows, therefore, from [9, Theorem 3.1, p. 119] that there exists
relaxed parametric solution ((0), r(0)) of (1.1) and ((0), r(0)) is the
uniform limit on [0, 1] of a sequence (. (0), r. (0)) , where j, j,
is some subsequence of positive integers. Let us, for the sake of simplicity,
redefine our subscripts so that r(t), x(t), (0), and r(0) denote the old
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rh(t), ..., "ry,(O). Then

t (o) + o uniformly on [0,1].

The new sequence S (r(t), x(t) )}’1, being an infinite subsequence of
S*, is an approximate solution of (1.1). Finally,

(1) x(h) x,(h) inf xs,(tl).

It now remains to show that ((0), r(O)) is a minimizing parametric
solution of (1.1). We observe that, by [9, Theorem 3.1, p. 119], there exists
a minimizing parametric solution (*(0), r*(O)) of (1.1). Furthermore, by
[9, Theorem 2.2, p. 113], (*(0), r*(O)) is the uniform limit on [0, 1] of
sequence ((i* (0), r.* (0)) j=l of solutions of (2.5.1) (corresponding to
pieeewise constant controls o1" (0), 02* (0), ). Since (2.5.1) is equivalent
to (2.3.1) to every (p*(0), (.i*(0), ri*(O)) on [0, 1] there corresponds
solution (r.*(t), x.*(t), Oi*(t)) of (2.3.1) on [to, h], and (j*(0) xi*(to)
and (*(1) x.*(h), j 1, 2, We have

’1(1) lim.*l(1) limx.*l(tl) >= xs(h) (1),

since {(r.*(t), x.*(t))}.=l is an approximate solution of (1.1), as can be
easily verified. Furthermore, ’1(1) _<_ (1(1) since
minimizing parametric solution of (1.1). It follows that (,1(1) ((1)
and thus we see that (((0), r(O)) is a minimizing parametric solution of
(1.1).

This concludes the proof of the theorem.
3.3 Let (((0), r(O)) be a minimizing parametric solution of (1.1), and

let O: be the union of all open subintervals of [0, 1] on which r(0) is constant.
Then r(O) is strictly increasing on [0, 1] 0 and, on that set, 0 is
continuous and increasing function of r. Therefore z(t) ((O(t)) is
continuous function of on (R)t r((g).

If ( is empty then r(O) is a continuous one-to-one mapping of [0, 1]
onto [to, hi; hence x(t)" [to, h] -- V is continuous. This need not be the
ease when ( is nonempty. In either ease, however, once a minimizing
parametric solution ((0), r(O)) of (1.1) is known, the construction of
[9, Theorem 2.2, p. 113] yields a sequence of solutions S
of (1.1.1) and a sequence {Tj(O)}j=I that approximate (((0), r(O)) in the
sense of Theorem 3.2. The sequence S is an approximate solution of (1.1).

This brings us to the next topic, namely, the derivation of "construe-
rive" necessary conditions satisfied by minimizing parametric solutions.
When the set A is defined by the simultaneous inequalities ai(x) <- 0,
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j 1, .-., m, the results of [12] are directly applicable to the system
(2.5.1), (2.5.2). Since these results are, however, relatively complicated,
we shall limit ourselves here to restating the pertinent conditions for the
special case A E.

4. Proper representations. The necessary conditions derived in [10,
Theorem 6.1, p. 142] apply to the minimizing parametric solution of (1.1)
if A E and there exists a proper representation f(x, ) of F(x) [10,
Definition 2.1, p. 130]. We shall indicate two ways in which such proper
representations can be constructed.

4.1. The Filippov representation. Let S be a compact set in some Eu-
clidean space and let f(x, z) V X S -- E+I be continuous and satisfy the
following conditions:

(4.1.1) F(x) If(x, z) Iz S), x V,

(4.1.2) the partial derivatives Of(x, z)/Ox, i 1, ..., n z 1;
j 1, ..-, n, exist, they are continuous functions of x for each , and
they are uniformly bounded.
Then it easily follows from our previous assumptions and from a lemma

of Filippov [1, p. 78] that f(x, () is a proper representation of F(x).
4.2. The Young representation. Let U be a compact Hausdorff spce (in

particular, a compact Euclidean set), and let h(x, u): V X U -- E+be continuous and such that

{h(x, u) u U/ closure of G(x), x V.

Assume, furthermore, that the partial derivatives Ohm(x, u)/Ox,
i 1, n + 1;j 1, n, exist, that they are continuous functions
of x, uniformly in u, and that they are uniformly bounded. Finally, let
S be the class of probability measures defined on Borel subsets of U,
and let

S.

Then it follows from [9, Theorem 4.1, p. 124] that f(x, ) is a proper repre-
sentation of F(x).
As a speciM case of the Filippov representation we may mention the

Gamkrelidze representation [2]. Let U be a compact set in some Euclidean
space E, and let h(x, u) satisfy the same conditions as in 4.2. Let

S { I (ul, ..-, u+2,pl, -.., p+2), u U (i 1, ..., n + 2),

n+ 1}p>= 0 (i= 1,...,n+2), Pi--
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We let
nT2

f(x, ) _. pih(x, uj).

Since, by a known theorem of Carathodory, {f(x, () a S} is the con-
vex closure of G(x), we conclude that the Gamkrelidze representation is a
Filippov representation.

5. Necessary conditions. Let A E, let f(x, o’) be a proper representa-
tion of F(x), and let ((0), T(0)) be a minimizing parametric solution of
(1 1) Furthermore, let (p) (1(p), n(p)), (p) (1(p),
iPi), x(P) ((P), (P)), and let x(P) be a continuously differentiable
mapping from some Euclidean, compact, and convex set C to B, such that
((0), (1)) x(C). Then we can easily deduce from [10, Theorem 6.1,
p. 142] that either there exists a point i5 C such that

((0) (15), (1) #(p), and /;pl()p min#(/5)p

(where /pi is the gradient of ), or there exist constants a > 0 and %
scMar functions z(0), i 1, n -k 1, on [0, 1], a function a(0) [0, 1]-- S,
and a point p C such that

(5.1) d((O), r(O) af((O) o-(0))
dO

n-b

(5.2) Z: 0,

a. e. in [0, 1],

n--bldzi(O)
--a

(5.3) dO =1 Ox

0__<0__<1,

a. e. in [0, 1],

i 1, n,

a. e. in [0, 1],

(5.5)

((0) (i5), ((1) (/), 7 ->- 0, and

a./5 rain a.p, where

a (/5) z(1)g,i(iO) + z’(0)4)(i5).
j=l ’=1
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6. Examples. We shall illustrate the application of our results with two
examples.

6.1. A continuous minimizing curve with an unbounded control. Let (1.1)
be of the form

(6.1.1)
]C r c2 xlr

(o) x(O) o, x.(tl) L > 0,

where subscripts, instead of superscripts, denote the components of x and
0 -<_ r < oo. We shall prove that this system admits an ordinary minimizing
solution with the (unbounded) control

L l/3 t-13(t) \,1
We observe that (6.1.1) has a solution y(t) corresponding to the con-

stant control

This yields

r(t) - (2L)latl-e/.

32yl(t) Sst, y2(t) -,.

Clearly ]x(t)
_
< y(h) S2t for ll solutions x(t) such that x(tl)

-<_ y(t) hence

(r(t) + x(t)r(t)) dt x(t) + L <_ St -- Lfor 11 such solutions. Thus Assumption 2.1 is satisfied.
We can easily verify that the function v(x, r) (r -}- 1) satisfies (2.2).

Thus (2.5) is of the form

a r a, ar , r
(r -t- 1)’ (r -I- 1)’ (r + 1)2,

(6.1.2) 1(0)= O, t/.(O) O, (1) L, r(O) O,

Let now u r/(r + 1). Then

(6.1.3)

a O,

(1) tl.

’ a( 1 u) a 0.au, 2’ au(1- u), r

Since 0 =< r < oo, it follows that 0 =< u < 1. We shall obtain the closure
of G(x) by choosing u from the closed interval [0, 1]. Assumption 3.1 is
clearly satisfied.

Let now f(x, ) be the Young representation of F(x), where h(x, u) is



UNBOUNDED CONTROLS 433

defined by the right hand sides of (6.1.3), U [0, 1], and the bases of the
topology are open subintervals of [0, 1].
The necessary conditions of 5 imply that, if ((), (0), r(0)) is a

minimizing parametric solution of (6.1.1), and if (0) is the corresponding
"control", then there exist absolutely continuous functions z(0), i 1, 2, 3,
and a positive constant a such that"

’ a f0 u da a.e. in [0, 1],

’ af0 u(1 u) d a.e. in[0, 1],

(6.1.4) f0r a (1 u) da a.e. in [0, 1],

(o) .(o) 0, r(0) 0, 2(1) L, r(1) tl;

(6.1.5)

(6.1.6)

0_<u_<l

z’ --az u(1 u) da, z2 za 0, a.e. on[0, 1],

z(0)] + [z + ]za 0 on [0, 1];
rain H(, z, u)

rain {(z- z. + z)u + (z.- 2z)u + z.} 0
0_<u_l

.e. in [0, 1].
Relation (6.1.6) yields (setting u 0 and u 1)

(6.1.7) z(O) >- 0 on [0, 1] and za >= O.

Relations (6.1.4), (6.1.5) and (6.1.6) yield

(6.1.8) lZl’ 4- z(’ 0 and Z11 - Z22 -- Z3T 0

hence (Zll)t 21 2Z22! + Z37" 0 a.e. on [0, 1] and

a.e. on [0, 1];

(6.1.9) Zl(1 )1(1) -t- 2z:(1) -t-- zah O.

Ifz 0 then, by (6.1.7) and (6.1.9), za z(1)((1) 0and, by (6.1.5)
and (6.1.6), z > 0 and is a.e. concentrated at u 0. This, however,
implies ((1) 0 L, contradicting (6.1.4). Thus z2 0.

2If za 0 then, by (6.1.6), ZlU + Zl(U must be nonnegative for
small positive u, and this implies Zl _-> 0 a.e. in [0, 1]. From (6.1.9) we
deduce

z1(1)(1) + 2zL 0;
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hence z2 < 0 and 1 <= 0 a.e. in [0, 1]. Since 1(0) 0 and 1’(0) >= 0, we see
that 1’(0) 0 a.e. in [0, 1], and this implies that is a.e. concentrated
at 0 and 2(1) 0 - L, contrary to (6.1.4). Thus za 0; hence& > 0.

Relation (6.1.9) implies z < 0 since z1(1)1(1) >- 0 and h > 0. Thus
zl zl + za -> 0 and H(, z, u) has a unique minimum with respect to u
in [0, 1]; this minimum is achieved at

1
Z3 Z2 1

z z + z
which belongs to [0, 1] since Zl 0, Z3 > 0, and z =< 0. Thus the measure

is always concentrated at g. Furthermore, since minu H(, z, u) 0,
H(, z, u) is a perfect square and it follows that

(6.1.10) (z5- 2z): 4z(z- z5 + z);

hence g 2&/(2& z.l). It follows now from (6.1.4) that

hence

Furthermore,

d_ ( )
_

4z
dr 1 z?l

1 4za
g ?(0) (0)

Z2

z. t2;
72 2Z3

hence

and

(0) (0)
6za z2

We thus verify that

L 2za h
Z2

xl 31/aLelat1-elatlla

and x. Lt/tl are continuous functions of t. Furthermore, ,z /(f q- 1)
implies

(t 2za- L- 3-11a(L)llat-x/a1 -- z2x hxl

Thus (6.1.1) admits an ordinary minimizing solution with the unbounded
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control

(t)=

We next consider a problem for which the minimizing control is a "delta-
function".

6.2. A minimizing curve with a single jump discontinuity. We wish to
minimize the value of (x(tl)) subject to the conditions

2(t) k(x(t) A- r .e. in [to, t],

(6.2.1) r(t) dt L > O,

x(t0) B0,

where to < t,x (x,-..,x),r R E,lr]istheEuclideannorm
(length) of r, B0 is a compact set in E, l(x)’E, ---> E, is continuous and
continuously differentiable in E, and (x) is continuous and continuously
differentiable in E. We shall also assume that
(a) ]k(x) =< c in E for some constant c, and
(b) the Jacobian matrix lc (Ol/OxJ), i, j 1, n, is either posi-
tive definite in E or negative definite in
Assumption (.a) and the continuous differentiability of k (x) are clearly

sufficient to insure the existence of a solution of (6.2.1). Let now x(t; Xo)
be the solution of the system 2 (t) lc (x (t)) a.e. in [to, 6], x (t0) x0.
We shall prove that there exists a minimizing parametric solution ((0),
r(0) ), 0 =< 0 1, with the following properties" either
(1) is a stationary point of (x), i.e., O/Ox 0 at (1),j 1, n, or
k is negative definite and

(-) x(; (0)), -(0) to + aO for 0 -<_ 0 _<- O t to
a

(0) x(t (0)) -- 0 O L(1), (0) t for < 0 < 1,
1 O

where a t to A-- L and p(1) is a vector of length 1, or
k is positive definite and

0 L(0), -(0) to for 0 =< 0 =< 0- L(O) (0) A- a’

(r) x(-; (0) + L(O)), -(0) to -f- a(O 0) for 0 =< 0 -<_ 1,

where a t to -4- L and (0) is a vector of length 1.
Such a parametric solution corresponds to a "solution" of (6.2.1) in

which r(t) L,(t t’), where , is some unit vector, t’ to (or tl) if
/, is positive (or negative) definite, and (t) is the Dirac -function.
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We shall now proceed to prove our ssertion. Let r ro, where ro
nd is u unit vector. Our problem is equivalent to that of minimizing
x (t) subject to the conditions

.0x (t) 0 a.e. in [to, ti],

2(t) k(x(t) q- ro(t)(t) a.e. in [to,
(6.2.2)

n+l(t) to(t) .e. in [to, t],

x(t) 4(x(t)), x(to) Bo, x+(to) O, x+(t) L.

We cn easily verify that all solutions (x (t), x (t), x+(t)) of (6.2.2)
are uniformly bounded and that Assumption 2.1 is stisfied. We cn
verify that the function v(x, r) rl - 1 r0 + 1 satisfies (2.2). Let
Uo ro/(v0 z7 1). Then (2.5) is of the form

()’ 0, ’ a(1 uo)lc() q- auo, ("+) auo,
(6.2.3)

a(1 Uo), a 0 a.e. in[O, 1],

o(1) 6((1)), (0) Bo, +(0) 0, n+1(1) L,
(6.2.4)

r(0) to, (1)

where Uo(O) and v(O) denote uo(r(O) and v(r() ).
Let now (, , +, ). We shall use a Filippov representation

to replace system (6.2.3). We let

S {(uo,v,u)lO =< Uo _-< 1,0 =< u =< 1, ]vl 1},

and replace (6.2.3) by

(0), 0, ’ a(1 uo)l() - auluop, (n+l)! auo,
(6.2.5)

ar a(1-- u0), 0 a.e. in[0,1].

As the (u0, v, u,) range over S, the right hand sides of (6.2.5) span the
convex hull of the corresponding set of (6.2.3). The necessary conditions
of 5 yield the conclusion that either OO/Ox O, i 1, n, at x (1)
or there exist a constant a > 0, an absolutely continuous function

(O) (Z0(O), zl(o), zn-{-2(O)), 0 <- O <= 1,

and a control u(O) (Uo(O), (0), u(O) such that"

(z)’= 0, z’= -a(1 --Uo),r()z, (z’+)’= (zn+2) 0
(6.2.6)

E: ldl # o o. [o, 11,

a.e. in [0, 1],
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(where kxr is the transpose of the matrix lc (Oti/OxJ), i, j 1, n)

H((O), (0), u(O) rain H((O), (0), u) 0
(6.2.7) 0=< =< 1,0=< ul__< 1. 1=1

a.e. in [0, 1],
where

H(, , u) z. k() - UlZ p - zn+l zn-2) Uo - z. ]() -(6.2.8)
z(0) =z= 0.

Let us henceforth assume that (1) is not u sttionry point of (x).
Then, by (6.2.6), either z(O)] 0 on [0, 1] or z(O)] 0 on [0, 1]. If
z(0)] 0 then, by (6.2.6), (6.2.7) and (6.2.8),

rain (z+ z+:)Uo z+ 0 a.e. in [0, 1]
0uol

nd z"+1 nd z"+ re unequal constants. This implies that either
z+ z+ > 0 nd u0(0) 0 .e. in [0, 1] or z+ z+ < 0 nd uo(0) 1
.e. in [0, 1]; hence +(1) 0 or r(1) t0, both contrary to (6.2.4).
Thuslz(O)[ Oon[O, 1].

Since 0 Uo(O) 1 nd z(O)[ O, it follows that

rain 0UlZ’F --[ZI’0

gild

(6.2.9) u(O) 1 and (0) z(O)
a.e. in [0, 1].

z(O)i
Relation (6.2.7) yields

H((O),2(O),u(O))

(6.2.10) rain (-z(O) "k((O) z(0)[ -+- z+1 z’+2)Uo
0_<u0=<l

-Jr- z(O).]c(((O)) -t- z+} 0 a.e. in [0, 1].

This last relation implies that, except for a set of measure 0, uo(O) 0 if

Ol.(O) --z(O)’]f((O)) lZ (0)l + Z
n4"l

Z,
n’b2

" 0

and uo(O) 1 if a(O) < O.
We observe that, by (6.2.5), (6.2.6), and (6.2.9),

)z(O)
dO z(0)l

We can now conclude, in view of Assumption (b), that da(O)/dO > 0 if kx is
positive definite and da(O)/dO < 0 if kx is negative definite.
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We have already observed that Uo(O) cannot be always 0 or always 1
since, by (6.2.4) and (6.2.5),

al Uo(O) dO L 0

J0 (1 u0(O)) dO to O.a

It follows that a(O) changes sign at a unique point O1 in (0, 1); hence, by
(6.2.10), uo(O) 0 a.e. in [0, 01] and uo(O) 1 a.e. in [01,1] if/c is negative
definite, and uo(O) 1 a.e. in [0, 01] and uo(O) 0 a.e. in [01, 1] if k is
positive definite. Our assertion now follows directly from relations (6.2.4),
(6.2.5), (6.2.6), and (6.2.9).
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A REMARK ON COMPLETE CONTROLLABILITY*

HSIN CHU
1. Introduction. Consider a plant defined by

(1)

where b and c are constant n-dimensional column vectors. The plant has an
input U and an output Y. In this note, we show that the plant is always
completely controllable (or completely observable) for every nonzero
vector b (or c) if and only if n 2 and the characteristic roots of A are
complex. We also give a different and somewhat seemingly shorter proof of
the following well known result of Kalman’s: the plant is completely con-
trollable (or completely observable) for some b (or c) if and only if in the
Jordan canonical form of A no two blocks are associated with the same
eigenvalue.

For the terminology used here, consult [5], [6], or [8].

2. On f AX. Consider the principal part

(2) AX,
where A (ai) is an n n real constant matrix and X is a column vector,
X (x:, x2, x), where xi, i 1, 2, n, are differentiable func-
tions of t. Let W be the volume of a parallelepiped, defined by X, AX, ...,

n--1A X, and the order of these vectors is their orientation. Then

W D(X, AX, ..., A-IX)
is the determinant of these column vectors X, AX,..., A-:X. It is
obvious that W D(X, X, X(-1)).
LEMMA. Along every trajectory of (2), we have

W(X) Ce<,
where C can be determined by any initial values Xo, to and Tr A is the trace

of A.
Proof. This result is a direct consequence of the Jacobi identity (see

[3, vol. II]).
THEOREM ]. Along every trajectory of (2), W(X) O, except at X O,
* Received by the editors May 18, 1965.
University of Alabama Research Institute, Huntsville, Alabama. This work

was supported by Contract NAS8-1646 with the George C. Marshall Space Flight
Center, Huntsville, Alabama.
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if and only if n 2, the characteristic roots of A are complex, and W(X) is
either positive definite or negative definite.

Proof. Let W(X) 0 except at X 0. Suppose n > 2. There exists a
nonsingular matrix P over the field of real numbers such that

PAP- A
\0. A J

where Or is some r X r zero matrix such that 1 =< r __< [n/2], where In/2] is
the integer part of n/2. Let X PX be a linear transformution. Then
J_’ (PAP-)X’. Choose a column vector Xo’ such that its first r co-
ordinates are not zero and its remaining n r coordinates re all zero. Then
the last r coordinates of all the vectors, A Xo, (A o, -o,
are zero. It follows that W(Xo’) 0. Let X0 P-1Xo’, which is not zero.
We have W(Xo) P ]-IW(X’) 0, a contradiction! Let n 2 and the
characteristic roots of A be reM. Then there exists a nonsingular matrix P
over the field of real numbers such that

PAP-I= A’= (
By the same argument as above, we can find a nonzero vector Xo such that
W(X0) 0. Consequently, if W(X) # 0, except at X 0, then n 2 and
the characteristic roots of A are complex. If n 2 and the characteristic
roots of A are complex, then there exists a nonsingular matrix P such that

PAp-1 A’ ( #-v )’
where t and v are real numbers with > 0.

Let X’ PX be a linear transformation and X, (X’) (x/, x ), be
any vector. We have

W(X’) (X’, A’X’)
\x

t,x + x, z’ + x,x + x2 /

W(X) --I P I--lP((Xl’) -[- (X2t)2)
It follows that W(X) is positive definite if PI < 0 and W(X) is negative
definite if[P[ > 0.
COROLLARY 1. A plant (1) is always completely controllable (or completely

observable) for every nonzero vector b (or c) if and only if n 2 and the charac-
teristic roots of A are complex.
COROLLARY 2. The function W is not a Lyapunov function unless n 2 and

the characteristic roots of A are complex with negative real parts.
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Proof. This follows by the lemma, Theorem 1, and the fact that
Tr (A) < 0 in this case.
COROLLARY 3. The singularities of zero vectors of f AX, where X R2,

can be classified by W, Tr (A) and A [, which is the determinant of A, as
follows:
a A < O" saddle point,
(b) A > 0, Tr (A) < O, W is either positive definite or negative definite:
stable focus,
(c) AI > 0, Tr (A < O, W is either positive semidefinite or negative
semidefinite: stable node,
(d) ]A > 0, Tr (A) > 0, W is either positive definite or negative definite:
unstable focus,
(e) [AI> 0, Tr (A) > O, W is either positive semidefinite or negative
semidefinite: unstable node,
(f) IAI > 0, Tr(A) O:center,
(g) A O: degenerate point.
The following theorem is a modified version of a well known result of

Kalman’s (see [5, Theorem 25]). Here, we offer a different proof.
THEOREM 2. Along every trajectory of (2), W(X) 0 if and only if the

minimal polynovnial of A is not equal to the characteristic polynomial of A.
Proof. If W(X) 0, then A, AX, A-X are linearly dependent for

all X. If the minimal polynomial of A is equal to the characteristic poly-
nomial of A, it is known that there always exists a nonzero vector X0 whose
minimal polynomial coincides with the characteristic polynomial of A
(e.g., see [3, vol. I, p. 180, Theorem 2]). Consequently, A, AXo, A’-Xo
are linearly dependent, a contradiction.

Conversely, if the minimal polynomial of A is not equal to the charac-
teristic polynomial of A, let

be the minimal polynomial of A, where p __< n 1, and we have (A) 0
or (A)X 0 for all X. It follows that A, AX, ..., AX are linearly de-

P- An-x. Consequently,pendent and so are A, AX,..., A X,...
W(X) 0 for all X.
COnOLLaIY 4. A plant (1) is completely controllable (or completely ob-

servable) for some b (or c) if and only if in the Jordan canonical form of A no
two blocks are associated with the same eigenvalue.
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THE APPLICATION OF LYAPUNOV’S SECOND METHOD
TO INTERCONNECTED SYSTEMS*

F. N. BAILEY
Summary. As many engineering systems are made up of an interconnection of

simple subsystems, it is natural to attempt to utilize this interconnection structure
in developing system analysis techniques. In this paper interconnection information
is used in coniunction with properties of the individual subsystems to obtain suffi-
cient conditions for asymptotic stability-in-the-large. This method may be applied
to a broad class of linear, nonlinear and time-varying interconnected systems as indi-
cated in the following three steps.

First, the Lyapunov functions and comparison equations are found for the indi-
vidual subsystems. Second, the comparison equations are interconnected, following
the interconnections in the original system, into a system of comparison equations.
This system is linear, with constant coefficients and of order equal to the number of
subsystems in the original interconnected system. Finally, the stability of the null
solution of this auxiliary system is examined. If it is asymptotically stable, then the
null solution of the interconnected system is asympotically stable-in-the-large. An
example illustrates the use of interconnection information in determining the suffi-
cient conditions for asymptotic stability-in-the-large for a ninth-order intercon-
nected system.

I. Introduction. It has long been realized that in the analysis of complex,
high dimensional systems, a straightforward application of general mathe-
matical tools would often become bogged down in the welter of detail.
For this reason the full promise of many potentially valuable mathe-
matical tools has never been realized. In attempts to overcome or to cir-
cumvent these difficulties, it has frequently been found that the more
efficient procedures are those which depend strongly on special properties
or structural features present in the particular system under study. How-
ever, such approaches have generally ignored a basic structural feature of
complex systems, namely, the interconnection structure. Many complex,
high order systems are actually composite systems--interconnections of a
large number of relatively simple subsystems into a complex whole--
with special structural features which might be used to advantage in analy-
sis.

The value of interconnection structure has been recognized by Kron
[1] who has developed procedures for determining the behavior of certain
types of high order composite systems through an analysis of each of the
individual, low order subsystems and their interconnections. This sub-

* Received by the editors February 12, 1965, and in revised form June 18, 1965.
Center for Control Sciences, University of Minnesota, Minneapolis, Minnesota.

This research was supported in part by the National Science Foundation under
Grant No. GP-540.
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stitution of many low order (and hopefully easier) problems for one high
order problem can be of value in cases where difficulties in analysis (com-
puter time, etc.) depend on problem order to a power higher than unity.
Although Kron’s work has never become popular, the basic concept of
studying a complex system through an analysis of its components (sub-
systems) and their interconnections is quite appealing since the implied
piece-by-piece analysis through the subsystems might avoid the formi-
dable difficulties that are often encountered in a straightforward attack.

This paper describes an application of this "composite system
proach" to stability problems or, more specifically, to the problem of
determining criteria for asymptotic stability-in-the-large (sometimes
termed global asymptotic stability) of interconnected systems containing
linear, nonlinear, and time-varying elements. The innovation lies in the use
of Lyapunov’s second method in conjunction with interconnection informa-
tion to simplify the stability analysis of composite systems. Lyapunov func-
tions for the individual subsystems are found and then "interconnected",
following the existing interconnections between the subsystems, to obtain
a vector Lyapunov function applicable to the composite system. By using
this approach the manifold difficulties commonly encountered in a direct
application of Lyapunov’s second method to the original composite system
can be largely circumvented. In 7 the suggested procedure is applied in
determining sability criteria for a ninth-order, nonlinear, time-varying
composite system.

2. Notation and definitions. The vector notation used is similar to that
employed by Hahn [2] or Cesari [3]. Let E" denote the n-dimensional
Euclidean space of n vectors, x col [x, x, x], where the x are
real numbers or real valued functions on the interval T [0, o of the real
line. The transpose of x is denoted by x’ and the inner product is defined as

(x, y) x’y xy
i=l

The norm of a vector in E is the Euclidean norm x (x, and if P
is an m X n matrix of real elements, then

P min {a a]l z > Px for all x

A useful metric on E is d(x, y) x y and when limits and con-
tinuity are mentioned the implied topology is taken with respect to this
metric. For any subset A of E" the distance from x to A is

and for any > O,

d(x, A) inf d(x, y),

S(A {x d(x, A < el.
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If f(x) is defined on R E and B c R, then f(B) If(x)[ x B}. For
any clearly defined to T, let To denote the set [to, ).
The differential equation 2 f(x, t) is normally an nth order vector

differential equation with x(t) and f(x, t) denoting n-vectors defined on T
and E X T, respectively. It is generally assumed that all differential
equations satisfy conditions sufficient to guarantee the existence, unique-
ness, and continuity of all solutions in t, x0, and t0 (continuity from the
inside is implied at the boundary of any closed region).
A continuous, rel vlued function v(x) on E with continuous first

partial deriwtives is said to be positive definite [positive semidefinite] if
v(0) 0 and v(x) > 0[v(x) 0] for ll x 0. A continuous, real valued
function v(x, t) on E X T with continuous first partial derivatives is said
to be positive definite [positive semidefinite] if v(0, T) 0 and there is a
positive definite [positive semidefinite] function w(x) such that v(x, t)

w(x) on E X T. A continuous, real valued function v(x) or v(x, t) with
continuous first prtil derivatives is sid to be negative definite [negative
semidefinite] if -v(x) or-v(x, t) is positive defitfite [positive semidefinite].
If v(x) is a definite or semidefinite scalar function o. E then V; is the vector

OX2

3. Stability and Lyapunov’s second method. Following common practice,
all further discussion of stability will refer to the stability of the null solu-
tion, x 0, of the vector ordintry differential equation (equation of per-
turbed motion [4]),

(3.) .-f(, t), x(to)

where x is an n-vector and f(0, T) 0. Most questions concerning stability
of equilibrium points or stability of a given motion can be formulated in
the manner of (3.1) by a simple coordinate transformation [2].
The following definitions are standard [2].
DEFINITION 3.1. The null solution, x 0, of (3.1) is stable if for every

e > 0 there is a t > 0 such that x(T0 S(0), to) c S(0).
DEFINITION 3.2. The null solution, x 0, of (3.1) is asymptotically stable

if it is stable and there is some > 0 such that

]imllx(t;x0,t0)II 0
t->oO

for every x0 S(O).
DEFINITION 3.3. The null solution, x 0, of (3.1) is asymptotically stable-

In Definitions 3.1, 3.2, nd 3.3 the initial time to is not clearly defined. However
it is esily shown [2] that if any of these properties hold for one initiM time then
they must lso hold for all future (greter) initial times.
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in-the-large (abbreviated ASL) if it is stable and for every x0 E

lira x(t; x0, t0)ll 0.
t->oO

Lyapunov’s second (or direct) method, abbreviated LSM, is simply a
method of determining certain qualitative features, such as stability, of the
solutions of (3.1) without actually solving the equations. In recent years
LSM has received considerable attention in both the control engineering
and mathematics literature and a wide variety of results are available [2],
[5], [6], [7]. In addition, there is a generalization of LSM following Conti
[8], [9] who views the positive definite function v (here called a Lyapunov
function2) as the dependent variable in a first-order auxiliary equation
(Brauer [9] uses the more descriptive term comparison equation). For ex-
ample, let v(x, t) be a positive definite function on E X T and be the
total derivative of v with respect to (3.1). If there is a function co(v, t), with
o(0, T) 0, such that along the solutions of (3.1),

(3.2) ) =< co(v, t),

then under quite weak conditions it can be shown that the null solution of
(3.1) has the same stability and boundedness properties as the null solution
of the first-order (scalar) auxiliary differential equation

(3.3) co(r, t).

This reduces the problem of determining the stability of an nth order system
to that of determining the stability of a first-order systema very signifi-
cant simplification.
While the auxiliary equation is an important generalization of the earlier

ormulations of LSM [the earlier versions of LSM are the special cases
where co(v, t) is required to be a constant] the application of this new formu-
lation requires the choice of two functions v(x, t) and co(v, t). For high order
systems this choice will generally be very difficult and a major limitation
on the practical value of LSM. (As in the earlier theory, the important
theorems generally give only sufficient conditions for stability so that nega-
tive results yield little useful information.) The remaining sections of this
paper describe a procedure for simplifying the choice of the two functions
v(x, t) and co(v, t) by applying the composite system approach suggested
above. Through an effective use of interconnection information this ap-
proach circumvents some of the current obstacles to the application of LSM
and comparison equations in high order systems.

This terminology is not uniform. Many authors call positive definite function
u Lyupunov function only if its derivative meets certain requirements. In this puper
the terms Lyapunov function and positive definite function re interchangeable.
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4. Composite systems, transfer systems, and models. As mentioned in
the introduction, a composite system is a complex system composed of
interconnections of simpler subsystems. The basic building blocks of the
composite systems considered here will be called transfer systems.
DEFINITION 4.1. A transfer system is an input-output device whose termi-

nal variables may be characterized by relations of the form

(4.1) 2 f(x, t, u(t) ),

(4.2) y h(x(t), t),

where x(t) is an n-dimensional state vector, u(t) is a p-dimensional input
vector, and y(t) is a q-dimensional output vector.
The terminal relations (4.1) and (4.2) characterizing the transfer system

are called the transfer system model. A composite system can now be defined
as an interconnection of transfer systems.
DEFiNITiON 4.2. Consider a set of m transfer systems, Si, i 1, m.

A conposite system is an interconnection of these transfer systems so that for
the ith transfer system the (vector) input u is given as

ui Biyl + Gu,
’-----1

i 1, ,m,

where y- is the (vector) output of the jth transfer system, u is an external
(vector) input to the composite system and B., G are constant matrices.
(Note that only time-invariant linear interconnections are allowed.)
The partitioned matrix

(4.3) B

Bu B B.
B21 B22 B2m

B, Bn. Bmm
where the submatrices B., i, j 1, m, are the same as those used in
Definition 4.2, will be termed the composite system interconnection matrix
or simply the interconnection matrix since it indicates the interconnection
structure of the composite system.

It should be pointed out that this sor of interconnection implies the
usual system theory assumption [10] that the individual transfer system
models are not affected by the various types of interconnections; that is, there
is no "loading" effect of one system on another. While this in itself greatly
simplifies the mechanisms through which instability of the composite system
can occur i.t is a reasonable assumption for a large number of interconnected
physical systems. The external input u is included to emphasize the fact
that the composite system itself might be a transfer system in a larger
composite.



448 F.N. BAILEY

a) Simple chain--P

u
m+u x

.J x2 xk=Y

b) Simple closed loop--PL
4.1. Two simple composite systems

In this paper the individual transfer system models may be linear, non-
linear and/or time-varying but will be assumed to have the special form

(4.4) 2i fi(xi t) + Diui

(4.5) yi Hix,

for i 1, m, where Di and Hi are matrices (the subscript i denotes the
ith transfer system in a given composite system). When these transfer
systems are interconnected,

Diui , DiBijHjxj + D,iGiu,

and the composite system model takes on the form

2 f,(xl, t) + C,x + C=x= + C,axa + + C.,,x, + Ku,

where

22 j’,2(x2, t) + C2lXl + C,2x2 + Cax: + + Cmx, + Ku,

y h(x, x., x,, t),

Ci DiBH K DiGi

and y is the composite system output. ]if the individual transfer system
models are n,zth order, the coml)osite system model will be nth order where
n ,,: ni. By defining a composite system state vector

x col [x, x, x2i, x2, x, Xmnm]
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the composite system model can be further refined to the form

(4.7) f(x, t) + Cx + Ku,

(4.8) y h(x, t),

where x is the composite system state vector, f is a column vector of the
f’s, C is the partitioned matrix of elements C., and K is the partitioned
(column) matrix of elements K. Since C. DiBH, the matrix C also
indicates the interconnection structure of the composite system.
As examples, consider the two simple composite systems shown in Fig.

4.1. Here it is assumed, for simplicity, that H I (the output of each
transfer system is its state vector x). For the simple chain Pc, the matrix C
has the form

0 0 0 0 0
C21 0 0 0 0

C 0 C 0 0 0
0 0 C43 0 0

0 0 0 Cm,m_l 0

and for the simple closed loop PL, the matrix C has the form

C 0 0 0
0 C2 0 0 0
0 0 C43 0 0

0 0 0 C,-- 0

More general interconnections will result in more general patterns of non-
zero elements (submatrices) in the matrix C.

5. Properties of transfer systems. In keeping with the composite system
approach outlined in the introduction, the basic interconnection structure
has been developed in 4. The next step is a study of significant properties
of the subsystems, the transfer systems. In the following section intercon-
nection structure and transfer system properties will be combined in the
development of stability criteria for the composite system.

At this point it is necessary to restrict attention to a special, but very
important, class of transfer systems. The members of this class are related
by the property of exponential stability-in-the-large.
DEFINITION 5.1. The null solution of (3.1) is said to be exponentially

stable-in-the-large (ESL) if there are two positive constants a and/ such
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that

x(t; Xo, to)] =< Xo e-(-to),
for all (x0, to) E }( T.
DEFINITION 5.2. A vector function f(x, t) on E X T is said to be in class B

(denoted f B) if, for all (x, t) E }( T, f(x, t) is continuous in x and
and has continuous first partial derivatives with respect to xl, x, x
such that Of/Ox L, where L is constant and i, j 1, n.
The following theorem brings out an important feature of equations bv-

ing a null solution which is ESL.
THEOaEM 5.1. Assume that f(x, t) B in (3.1). Then (3.1) is ESL if, and

only if, there is a positive definite function v(x, t) such that
() c ] (x, t) c x ,
(b) (x, t) -c]] ,

Proof. See [11, p. 59].
DFNTON 5.3. A system modeled by (4.4) nd (4.5) will be sid to be

in classE if the unforced model [(4.4) with u(t) 0] is ESL ndf(z, t) B.
The practical importance of class E is indicated in the following theorem.
TEOaM 5.2. The following ordinary differential equations are ESL"

() the linear .constant coecient equation 2 Ax, where A is stable (i.e.,
all of its eigenvalues have negative real parts);
(b) the linear time-varying equation 2 A(t)x, where A(t) is continuous
and bounded and 2 A(t)x + u(t) has the property that bounded u implies
bounded x;
(c) the equation 2 f(x, t), where f(x, t) B, f(O, T) 0 and x’f(x, t)

c x < 0 for all (x, t) E T with x O.
Proof. () is a well known result [2]. A proof of (b) is give in [12, p. 518].

Prt (c) is easily veriSed using the Lypu.ov function,

so that

(x, t) x’f(x, t) <= -,ll x ’.

The desired result then follows immediately from Theorem 5.1.
The list given in Theorem 5.2 is far from exhaustive. A more detailed

description of class E nd consideration of other interesting classes of
transfer systems will be the subject of future study.
One additional property of systems in class E should be noted here. It

can be shown [13] that for such systems it is possible to define a gin
as a ratio of a bound on the size (norm) of the sate vector x to a bound
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on the size (norm) of the input u. Roughly speaking (neglecting transients),

tto

z>__to

An upper bound on can be estimated with the aid of a simple extension of
some of the concepts of LSM. A complete discussion of this gain and its
estimation my be found in [13]. However, the following theorem (lso
proved in [13]) is included here because it leds to n interesting interpreta-
tion of results obtained in 6.
To 5.3. A transfer system in class E has a gain,

N c4 c [D[l,

where c, c, ca, and c4 are the constants noted in Theorem 5.1.
Note that the accuracy of the gain estimate depends on the constants

c, c, ca, c4 and thus on the particular Lyapunov function used in making
the estimate.

6. Stability of composite systems. The concepts developed in earlier
sections can now be applied to the central problem, stability of the com-
posite system. However, before attacking the most complex situation with
general interconnections the salient features of the composite system ap-
proach will be illustrated by first considering the two simple systems
shown in Fig. 4.1. While both of these systems are shown with an input,
only the stability of mfforced composite systems (u 0) will be considered.

The following lemmas will be of major importance in this section.
LEMMA 6.1. Let x( t; Xo to) be a solution of the differential inequality

(6.1) 2 <= Ax,

with x(to xo, to) Xo, and let y(t; y0, to) be a solution of the differential
equation

(6.2) ) Ay.

If all the elements ais’, i, j 1, n, of A are nonnegative, and Xo yo
then x( t; xo to) <-_ y( t; yo to) for all To.

Proof. See [14].
LMM 6.2. Let B be a matrix with negative diagonal elements and non-

Throughout this section, the notation x =< y, where x nd y re n-vectors, means
that x =< y for 1, n.
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negative off-diagonal elements. If x( t; Xo to) and y( t; yo to) are solutions of
(6.3) 2 <= Bx,

(6.4) By,

and xo yo then x xo to) -< y yo to for all To.
Proof. Let --d be the smallest of the diagonal elements of B. Applica-

tion of the transformations v e+dtx and w e+dty changes (6.3) and
(6.4) to

-<-- (B zr dI)v,

B + d)w,

and B A- dI has all nonnegative elements. Then by Lemma 6.1, since
Vo wo, it follows that v(t; Vo, to) <-_ w(t; Wo, to) and thus x(t; Xo, to)
=< y(t; yo, to) for all To.
LEMMA 6.3. The null solution of the system of linear differential equations

21 alxl - blx

22 a2x bx

2, anX, b,x_l

with a and b real, ai > 0 and b >= O, i 1, n, is ASL if and only if

IIb < 1.
i=l ai

A proof of this lemma is given in the Appendix.
LEMMA 6.4. If a > 0 and b >= O, then for all z T,

a
z

b
--az -- bz <__ - -

if and only if

a
z

b
--az -- bz <-_ - 4--

b b baz.+ a <_ a- 2a - z - bz
2a - z "4- 2-

if and only if

b ) ba
z

1 (az b) < a z -4-.--- -4- a - --- 2a

The uthor is indebted to J. K. Hle for this proof.
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Now consider the simple chain Pc of Fig. 4.1(a). It is intuitively obvious
that such an interconnection of individually stable systems will be stable
because of the "weak" interconnections involved (no loading ssumed, see
4). The following theorem gives a simple proof of this fact.
THEOREM 6.1. Consider the simple chain Pc with u ul 0 and ui xi_

for i 2, ..., m. If the individual transfer systems Si, i 1, ..., m,
are in class E, then the null solution of the composite system is ASL.

Proof. Since the individual transfer systems are in class E, the ith
transfer system is modeled by (4.4) and (4.5). Moreover, fi(xi, t) B,
and when u O, 2 fi(xi, t) is ESL. Thus there is a positive definite
function v(x, t) satisfying (a), (b), and (c) of Theorem 5.1. Now the total
derivative of this v(x, t) with respect to (4.4) is

va(xi, t) + Vv’Du <- -ca[l x + c.[I x 11. D {l" ui(t) [[,
where a is the total derivative of v(x, t) with respect to 2 f(x, t).
By Lemma 6.4 then,

> < _c x + Ci4 Di u ,
2 2ciz

or

where

a > 0, Y 2ca

When the interconnections are made, u, 0 and

v-_ for i 2, 3,-..,m.
el-1,1

With 5 "li/c-,,,, i 2, ..., m, the resulting system of differential
inequalities becomes

where v >__ 0. Since 5, 0, the trivial solution of the system (6.5) with
inequalities replaced by equalities (a system of uxiliary equations) is
ASL (Lemm 6.3). Then by Lemma 6.2, the system (6.5) is also ASL, im-
plying that each vi goes to 0 as goes to . Since x <-_ v/ca, the equi-
librium solution x 0 of the composite system is therefore ASL.
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A more impressive result is obtained for the simple closed loop PL.
In this case the stability of the individual systems is not sufficient. The
additional requirement is that the loop gain estimated from the chosen
Lyapunov functions be less than unity--again an intuitively plausible
requirement.
THEOREM 6.2. Consider the simple closed loop PL with u 0 (no external

input), Ul x, and ui xi_l for i 2, m. If the individual transfer
systems S are in class E with gain estimates i 1, m, then the null
solution of the composite system will be ASL if 1.

Proof. As in the proof of Theorem 6.1, there is again a system of dif-
ferential inequalities

(6.6) -av + ,
where

a. -- > 0, i 1,...,m,
2c2

D+ > O, i =’2 m,
2ci ci--1,1

where the v, >= 0, for i 1, m. The trivial solution of the composite
system will be ASL if the system of auxiliary equations [(6.6) with in-
equalities replaced by equalities] is ASL. But, by Lemma 6.3, this will
occur if

i=1 oi

OW

/i,
o. c c+_, c_,

(where c_1, c1 when i 1) and so the requirement that II= v < 1,
or ]I1 /a < 1, thereby gives ASL.
The main theorem now gives sufficient conditions for ASL of the null

solution of a composite system with arbitrary interconnections, that is, a
system where C has an arbitrary number of nonzero elements. It will, how-
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ever, be assumed that Bi Cii 0 since a nonzero B, represents an
internal connection within the transfer system that can. be included in
the transfer system model itself.
THEOEM 6.3. Let P be a general composite system made up of n transfer

systems, S of order n i 1, m, and modeled by (4.7) with Ci O.
Assume that each transfer system S is in class E and has a Lyapunov func-
ion v(x, t) satisfying the bounds listed in Theorem 5.1 with coefficients
c1, c, c, c (all coecients are positive). Consider the ruth order linear
systen of auxiliary equations,

(6.7) P At,

where A is an m X m matrix of elements,

Ci2ma, c4 E Cij [[2

for i j,

fori j,

with C an element (submatrix) of C. The null solution, x O, of the un-

forced composite system model [(4.7) with u 0] will be ASL if the null
solution, r O, of the ruth order linear auxiliary system (6.7) is ASL.

Proof. The ith transfer system can be modeled by (4.4) and (4.5) and
due to the interconnections,

(6.8) u B’y’.
j-l

Since this ith transfer system is in class E, there is a Lyapunov function
v(x, t) such that, with respect to (4.4),

(6.9)

Now a substitution of (4.5) and (6.8) into (6.9) and application of Lemma
6.4 gives

c E .D B H. E x. .
A reintroduction of the inequalities

II x _<_ (, t) ._<_ ll ,
and a use of the relation C DiBHy yields

2Ci2 2Ci3 j=l j=-I Cjl
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The resulting system of inequalities is

c (c4 c v-=< -2-v +

< v + i] v
2c 2c = =1

O

(6.10) 5 Av,

where v col Ivy, v, ..., v] nd means that the inequality holds
componentwise. Now by Lemm 6.2, v(t) r(t) if v(t0) r(to). Thus

x(; o, to) ] < 1 1v(t) r(t), i , ..., m,

nd so asymptotic stability-in-the-large of the solution r 0 of (6.7) im-
plies asymptotic stability-in-the-large of the solution x 0 of the com-
posite system.

This result does not hve the intuitive appeal found in the results of
Theorems 6.1 and 6.2. That is, there is nothing like loop gain to suggest
that the resulting stability criterion is reasonable. However, this is not
surprising. The same difficulty is encountered even in a linear time-in-
wriant composite system with arbitrary interconnections.
Theorems 6.1 and 6.2 are now corollaries to Theorem 6.3 when the

matrix C has the special form C or C.

7. Example--a ninth-order composite system. Consider the ninth-order
composite system shown in Fig. 7.1. The individual transfer systems are
assumed to have the following models"
$1" linear, constant coefficient, third order,

cl AI xl -t- DI u(t), where A1 T 0 --3 T-1,
0 0

and T is any nonsingular 3 X 3 matrix;
$2" linear, variable coefficient, second order,

22 A2(t)x2 + D2 u2(t), where A2(t) I-- a(t)
--2a(t) 1

Y2 H2 x2,
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FIG. 7.1. Composite system for example

and a(t) is a continuous real valued function such that a-l(t) exists for all
T and, in addition,

0.5 < a-(t) < 1 nd 0 < da-(t)
<1;

dt

nonlinear, first order,

23 f(x3) - D3u3 (t), where A(x3) x3 1/2sin 2x3

y Hx
$4 nonlinear, third order,

24 f4(x) + Du4(t), where f4(0) 0,

y4 H4x4.

The problem here is to determine vlue of the positive constant k that
will insure that the composite system is ASL if

x’f4(x) -1 x4

The intereonnections suggested in Fig. 7.1 indicate that

u y + Baya,

U3 Y2

u

These interconnections are described by the matrix C whose partitioned
elements are Ci DBiHi. In this case, C has the partitioned form

o o
C C 0

[0 C 00J’0 C 0 0
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and the composite system model is

(7.1) 2 f(x, t) + Cx,

where x col [x11, x2, x3, x2l, x, x3, x4, x4, xa] is the composite
system state vector. When written out in detail, the composite system
model has the form

(7.2)

where ci’. is the (m, n)th element of Cir., the (i, j)th submatrix in the
partition of C.
A straightforward approach, to this problem would involve choosing a

Lyapunov function involving the 9 state variables, evaluating its deriva-
tive with respect to (7.2), and then studying this derivative to determine
conditions under which it is negative definite. Clearly, this approach would
involve the solution of some very difficult problems. On the other hand, the
techniques developed in 6 provide a method for obtaining a solution
to this problem rather quickly.
The first step is to find Lyapunov functions of the type described in

Theorem 5.1 for each of the transfer systems. This will, of course, be possible
if and only if these transfer systems are in class E.
S Since this is a constant-coecient linear system, standard tech-

niques [2] can be used to obtain the Lyapunov function v(xl) x’Px
with O(Xl) -x’Qx, where

P (T-) 0 2 0 T- and Q (T-) 12 T-’.
0 0 3 0 30

For this Lyapunov function the inequalities of Theorem 5.1 are satisfied
withc 1, c2 3, ca 4, andc4 6.
S In this case, choosev2(x, t) x:’P(t)x with O(x, t) -x(Q(t)x2,
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where

1 1 4a(t)

In this case the inequalities of Theorem 5.1 are satisfied with cl 0.5,
c2 3.5, c3 2, and c4 7.

$3 Since this model is first order, x xl. Choose

() x,

and then (x) x31f3(x31). The inequalities are now satisfied with cl

c2 1/2, c3 0.56, and c4 1.
$4 In this case, choose

and note that

V4(X4) X4 X4,

x4Pf(x4) . -kll x4 2.

Then cl c2 1/2, c3 ], and c4 1.
With Lyapunov functions chosen for each of the transfer systems, it is

possible to apply Theorem 6.3. The system of auxiliary equations is, in
this case, the fourth order system

/ --crl - r4,

(7.3)
i’: -ar: + r,

-a4r4 + 4r.

In (7.3)

2 1
a- 3’ a2- 3.5’ a 0.56, a4 k,

j. 18 C41,
49

2 - C21 + C23 I1),

2

2
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where Ci- are submatrices of C. The numerical values in the above constants
are obtained from the bounds on the Lyapunov functions chosen for the
individual transfer systems. (See Theorem 6.3.) According to Theorem
6.3, the null solution of the composite system (Fig. 7.1) will be ASL if
the null solution of the system of auxiliary equations is ASL. The latter will
occur if and only if the roots of the characteristic equation,

+ 4()[(-- x)#,#] o,
all have negative real parts. [Here the dependence of a4 and 4 on /c is
indicated as a4(k) and 4(/c).] Thus the original problem has been reduced
to a much simpler problem that can be solved by root locus or numerical
techniques.

8. Conclusions. In the study of complex physical systems frequently
it is found that the difficulties encountered are strongly order dependent.
Stability study through LSM is a typical example of a technique that is
theoretically applicable to problems of arbitrary order but actually en-
counters formidable practical limitations that grow rapidly with the order
of the system being treated. Thus the application of LSM to low order
(third, fourth and sometimes fifth) problems has received a considerable
amount of attention while high order problems are still inaccessible.

This paper describes an attempt to circumvent these order dependent
limitations of LSM by noting that many high order systems are actually,
or effectively, an interconnection of lower order systems. The recognition
of this interconnection structure has led to the definition of a composite
system as an interconnection of simpler subsysterns, termed transfer sys-
tems, and a study of the properties of these transfer systems with the aid
of LSM and the associated concept of the auxiliary equation. For a com-
posite system made up of transfer systems belonging to a reasonably
broad class, the auxiliary equations for the individual transfer systems
can be interconnected, following the interconnections existing in the given
composite system, to obtain a system of auxiliary equations whose solu-
tions have the same stability properties as those of the given composite
system. Moreover, in the construction of this system of auxiliary equations
it has been necessary to apply LSM only to the lower order transfer sys-
tems. The difficult problem of constructing a single Lyapunov function for
the high order composite system has actually been avoided.
As might be suspected, this simplification of the original problem is not

obtained without some sacrifice. The main disadvantage of this approach,
a fault common to most attempts to obtain general sufficient conditions
for stability, is that it may sometimes be overly restrictive (overly sutti-
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eient) due to a failure to make the best use of available information about
the fine structure of the system under analysis. This fine structure is
"washed out" at points where matrix norms or absolute values are used.
Hopefully, this is compensated by the fact that the introduction of trans-
fer systems and interconnection information into stability analysis has
increased the class of problems to which LSM has practical application.

Appendix. The following proof of Lemma 6.3 uses the root locus concept
described in [10].
Proof of Lemma 6.3. The characteristic equation for this system is

II(x- ai) IIbi 0.
i=1 i=1

Now replace bl with ubl and consider the root locus obtained for u _>- 0.
Ifu 0there are n negative real roots X -a,i 1, .-.,n. As#
increases the most positive root moves to the right along the real axis
reaching the origin when

i=1

It is now only necessary to ascertain that no root has crossed the imaginary
axis for a smaller value of u. However, this cannot occur since at all points
X on the root locus it is easily shown that

i h --t- a
#

i=l bi

Thus the point where the locus crosses the imaginary axis with the smallest
value of u is at the origin and the root moving along the real axis must be
the first to cross. Now if u 1 the necessary and sufficient condition (A-1)
becomes

H<I,i-1

completing the proof.
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ON THE EXISTENCE OF OPTIMAL STOCHASTIC CONTROLS*

HAROLD J. KUSHNER
1. Introduction. We will prove several theorems which state, under

their prescribed conditions, that if there exists one stochastic control which
accomplishes a given task, then there is an optimal stochastic control.
Up to Theorem 3, the systems of concern are governed by the stochastic
vector differential equations,

(1) dx(o, t) f(x(w, t), u(w, t) dt 27 o-(x(w, t), u(x(w, t), t) dz(w, t),

or

(2) dx(,, t) f(x(,, t), u(x(, t), t) dt + z(,, t),

where x(o, t) is an r-dimensional vector with components x0(0, t),
xr-l(w, t); u(x(, t), t) is a vector control; z(x, u) is an r X r matrix, and
z(., is a vector stochastic process. For both forms there is the restric-
tion

o(, t) (x(, t), u(x(, t), t)

In the form (1), z(-, is assumed to be Brownian motion; in the form
(2), z(., is a more general process to be described later. In Theorem 3,
u(x(o, t), t) is replaced by the more general form u(w, t). Many stochastic
systems may be put into the form of 1 or (2), but this will not be pursued
here. The problem will be investigated with two types of tasks, or terminal
conditions. The first is that x(, t) satisfies (with probability one)

(3) e(x(, )) 0,

where g(. is continuous, and T is a random stopping time (see [6, p. 578]).
The second is a terminal condition on the expectation

(4) (Fx(, ) O,

where T is a nonrandom terminal time. (See [1] for examples where the
latter case is of importance.) In both cases, the risk to be minimized by
the optimal control is the expectation

T

(5) R(u) E ]o f0(x(, t), u(x(, t), t)) t Ex0(, T),
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where T is either the first (random) time that (3) is satisfied or, for the
second problem, T T, any time that (4) is satisfied.

For the deterministic problem, which has already received substantial
attention [2], [3], [4], the question of existence (assuming that there is one
control which accomplishes the desired task) is equivalent to the question
of the closure of a set of attainable states x(t), over all possible controls
u(. ). In the stochastic case, the question also reduces to that of closure of
an appropriate set of attainable sample states or of expectations.

2. Existence theorems. Define the norm of any vector v with components
v as v v I. Let K and Ki be any positive, finite and nonrandom
numbers. The abbreviations a.a. and w.p.1 are used for "almost all "and "with probability one", respectively. 2 is the space of points . 2(t)
is the minimal z-field over which z(., ,), 0 =< , = t, is measurable. Define,(T) 2; (T) X 5(T), where 5 (T) is the Borel field over the interval [0, T].
Since z(., is assumed to be measurable in the pir (w, t) (see (A4)),
it is measurable with respect to ,(T), for =<_ T. The measure on the sets
of 2;(t) is m(d) for all t, and the measure on the sets of (T) is #(do X dt)
for all T. Let E denote the Euclidean r-dimensional vector space.
The following conditions will be used.

(A1) f(x, u) <= K(1 - x - u ).

(A2) fi(x - 6x, u + 6u) f(x, u) <- K(ll 6x - 6u ll).
(A3) E max z(, t)II < , Ez(, t> o.

t<T

(A4) z(., is measurable in the pair (o, t).

(As) (x, ) =< K( + z + u II).
(Aa) .(x + , u + u) .(x, )l --< K(II x + u ll).
(A7) g (.) is uniformly continuous.

LEMMA 1. Assume form (2) and (A1) to (A4) and (AT), and that almost
all sample functions of z(., are continuous. Let K be a given finite number
and let the family of admissible controls be of the form u(x, t), where u(.,
satisfies the uniform Lipschitz condition, for fixed K,

(6)

Let the initial condition x(o, 0) be a fixed constant. Then there is a unique
continuous solution to (2) in the interval [0, ), for a.a.. Also there is a
nonrandom K2( T) < not depending on u(., ), such that, for any u(.,

(T) is defined s the minimM z-field over the product sets in 2(T) X 5(T).
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satisfying (6), the corresponding x (., satisfies

(7) E max x(oo, t)II <--K2(T)
__< T<

Assume that, for some control u (., satisfying (6),

(8) T,o inf {t’g(x(o, t)) 0}

is defined and finite w.p.1. Then T and x(e, T) are random variables, and

(9) (x(, T)) 0

w.p.1.
Proof. The proof of the existence, uniqueness, and continuity of x(.,

w.p.1 and of (7) is essentially a paraphrase of the proof for the vector
Brownian motion case given by Ito. (See [5] for the proof in one dimension.
This will not be proved here, but is easy to see since, by virtue of (6),
f(-, satisfies a uniform Lipschitz condition, and, since dz(w, t) in (2)
is not multiplied by a function of x, no stochastic integrals are involved.
(See, e.g., the remark on p. 286 of [5].) Inequality (7) holds for all u(-,
satisfying (6), since K(T) depends only upon K, K1, T, and x(, 0).
By the continuity of x(, w.p.1 and uniform continuity of g(. ), and
T < w.p.1, we have g(x(w, T)) 0 w.p. 1. Define the random variable
T by

Ct {" T’ t} U " g(x(e,r) )l <
n=l OrNt

where {r} are the rational numbers. Then, if

inf g(x(, s))l 0,

and, since g(. is uniformly continuous, ]g(x(, T’)) O. Fix w; then
if T’ > t, there is no s N such that g(x(, s) 0 (unless is in some
null set which does not have to depend on t). Thus, T T’ w.p.1 and
T can be defined (by changing its value on some null set) to be a random
variable.

Since x(., ) is continuous w.p.1 and T < m w.p.1 and is a random
time, x(, T) is a random variable (by arguments in [6, pp. 578-579]).
THEORE 1. Assume the conditions of Lemma 1 and let fo O. Restrict

the family of admissible controls to those which satisfy (6), for fixed K and

for which the corresponding quantity (8) is defined and finite w.p.1, and for
which R u < and

(10) ET <
where is a given constant not depending upon the particular u(., ). Then,
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if there is one admissible control, there is an (optimal) admissible control,
which absolutely mininizes (5).

Proof. Define a inf R(u), where the infimum is over all admissible
u(., ). Thus, there are an infinite sequence of controls u( ., and cor-
responding 5/’ (perhaps the same) such that R(u) an O mono-
tonically. To prove the theorem, it must be shown that there are an ad-
missible control t(., and corresponding T such that R (t) a,
ET <- , and g(2(, T)) 0 w.p.1.
By (6), the family {u (., is equicontinuous. Therefore, by Ascoli’s

theorem, for any compact set D in E X [0, ), there is a function t(.,
satisfying (6), and there is a subsequence (indexed by n) such that un(x, t)--- t(X, t) uniformly in D. By the diagonal process, we can find a further
subsequence (indexed by n) and a function t(., satisfying (6) such
that

(11) un(x, t) ’,(X, t)

uniformly on all compact sets in E [0, ). We will show that t(.,
is the desired optimal control.

For any control u (., satisfying (6), (6) and (7) yield (r is the dimen-
sion of x)

(12) E max u(x(w, t), t)]] _<_ Kill --K2(T)-- T] <: .
By (i2), and x(o, 0) 2(o, 0),

tx(w, t) - xn(o, t) 2(o, t)

(13) fo [f(x(’ s), u(x’(, s), s)) f(2(o, s), (t(2(, s),s))] ds,

x(, t)II --< fo K[II z(,)II + (x(,),) ;((, ), )II1 ds.

Substituting

(x, ) (, ) <= un(x, ) (, )II + u(, ) (, )II

and

into (13) yields

Un(xn, S) un(z, S)I[ Kill x

where

8x(, t)11 <= (Kr) (K -4- 1)
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from which follows, via an application of Gronwall’s lemma, with

T

(14) maxt<_r 6xn (, t)I1 <= K3 fo 6u (’ s) ds,

(15) E maxt_<r tx" (w, t)[[ =< Ka f0
r

By (6),

u(, s) .(d X ds).

tiu’(, s) _<_ 2K1[1 -}- 2(o, s -}- I],

which, by Lemma 1, has a finite integral over ft X [0, T]. Since u(x, s)
zZ(x, s) pointwise on E X [0, T], and since max,=<r 2(o, s) < w.p.1

by (7), we have tiu(, s) -- 0 w.p.1 almost everywhere on ft X [0, T].
Thus, the dominated convergence theorem is applicable and yields that the
right side of (15) goes to zero as n -- ; hence

(16) E max xn(o, t) --* O.
tNT

There is also a further subsequcnce (also indexed by n) so that

(17) max t)[I o

w.p.1.
Next, it will be shown that

lira inf xn(, T 2(,

where 7 is a random time with ET 7.
Write

S’ x(, T") 2(w, .)11 Sl + s,
s xn(w, T) (, T) ,

LetT be a sequence of real numbers. From (16), there is a sequence
n so that

E max x(, t) < 2-.
tTi

Thus, there is subsequence such that maxtzr x’(, t) 0 w.p.1
us i . This implies that S" 0 (along the subsequence n) for
such thnt T > T only finitely often. Replace n by i, and define T
sothutm{" T > T} < 2-.Since

m{" T > Vi} < ,
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the Borel-Cantelli lemma implies that T > Ti only finitely often w.p.1
(or, equivalently, m{o" T < T, all i > I} -- 1 as I -- ). Thus, as

(18) T2) T2)II- 0 w.p.1.

Define the rndom wrible

lira inf T.
By Ftou’s lemm nd (10),

(19) E -< lira inf ET =< .
Now, since (o, is continuous w.p.1, in [0, nd T < w.p.1,

lira inf (, T) (, )II 0.

Thus, lira inL S 0. Since

lira inf (S -t- S) lira S -- lim inf S2

lira inL S 0. Since g(. is uniformly continuous, this impli es that

g(x(o, To,J)) g(2,(o, oo) O.

Since ao(o, is continuous w.p.1 and nondecreasing as increases,

(20) lim inf a?o (o, T) 4o(o, 2P) 0

w.p.1. Now, by (20), and since (18) converges to zero w.p.1,

lim inf Ix0

lim inf [(Xo (o, T. 2o(o, T )) -t- (o(o, T 2o(o, 2.))]

lim [Xo (o, T= 4o (o, T= -t- lim inf [40 (o, T=) 40(o, T=)

0 w.p.1.

Fatou’s lemma now yields

E lim inf Xo (, T Eo(o, T) =< lim inf Exo(,

proving that g(., is the optimal control.
Let T be the first time g((o, t)) 0; we have T =<

on some o set, then the loss obtained by stopping at T will also be
since Xo(o, is nondecreasing in t. This completes the proof.
An easy consequence of the proof is a corresponding result when the
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terminal constraint is the set of expectations g(Ex(o, T) 0, where T is
nonrandom and finite. The proof is based on the fact that Ex’(w, T)
--. E(o, T) for all finite T. The proof requires neither f0 -> 0 nor the
continuity of x(o, ), and, consequently, the continuity of z(o, may be
dropped.
COROLLARY. Assume A1) to A4 and (AT). Let all admissible controls

satisfy (6), and restrict the terminal times to be nonrandon and bounded by
some arbitrary but finite number. Let the target set be the set of expectations such
that (4) is satisfied, where T is nonrandom and finite. Then if there is one
admissible control such that (4) is satisfied, there is an admissible optimal
control.
We state the following theorem for form (1). The proof, although differ-

ing in detail, is essentially the same as the proof of Theorem 1, and will
not be given, z(., is confined to Brownian motion to assure that the
various stochastic integrals are defined and have suitable properties.
THEOREM 2. Assume all the conditions of Theorem 1, except let (1) replace

(2), and let z(., .) be vector Brownian motion. Assume (AS) and (A6).
Then the conclusions of Theorem 1 hold.
The existence and uniqueness of solutions to (1) and (2) has not yet

been proved under much more general conditions on u(x, t) than those of
Theorem 1. In this sense, Theorems 1 and 2 represent about the best
currently attainable result with the use of the control form u(x, t), de-
pending explicitly upon x.

In order to present existence results with other control forms, a different
approach is taken in the sequel. Assume that the information upon which
the values of the control are to depend are observations on z(., ), and
that almost all sample functions of these observations are Borel measurable
(as a function of t). We now write the control as an explicit function of
o and t, namely, u(0, t). Without specifying the type of observations
further, let there be a sub z-field c(T) ,(T) with respect to which the
observations, as functions of o and (t T), are measurable. Then the
admissible controls u(., .) will be measurable over c(T). Let 2c(t)
be the fixed section of c(T), for _<_ T; then we also require 2,(t) c 2(t),
i.e., u(., t) does not depend on the future. For any function u(., .)
measurable over c(T), the section u(., t) is measurable over the section
2,(t), for each =< T. Under (Ag), all sections of u(., .) are integrable
(over the respective sections of (T)).
We will use the following.
(AS) All admissible u(., are measurable with respect to ,(T), for

As one example, choose 2(t) 2(t) with 2(s) 2(t), s < t, and define (T)
as the minimal -field over the union U [(t) X 3(t, T)], where 5(t, T) is the

Borel field over [t, T].
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any finite T. Also, almost all u(w, are Lebesgue measurable, and Zs(t)
2; (t) for each t.
We will also require the following.
(A9) Let u(, t) take values only in the convex compact set U.
(A10) Let lc(. be a continuous function and lc(U) a convex set.
The following theorems are also of interest for the reason that if c(T)
(T) and Zc(t) Z(t), then the optimal control in this family of controls

yields at least as small a rist as the optimal control of any other family.
There are a number of important cases where the control may be chosen
based on observations on z(., only; e.g., if dz(., 0, except at random
times determined by a Poisson or other distribution, when it takes an
impulsive form; or when a stochastic process, say z0(., ), correlated with
the z(., which drives the dynamical system, is the only function whose
values are observed.
LEMMA 2. Let B be a space of points , a z-field over B. Let () be

measurable with respect to 2. Let U be a compact set in E q, and to(. a con-
tinuous function mapping U into E". Assume there is a not necessarily
measurable function u’(z) mapping B into U such that

(21) 5’(a) (Ut(0")) (Ul’(O’), "’", Uq’(O’)).
Then there is a measurable function u(. talcing values in U such that

() (u() ).

Remark. With replacement of the real line by a general measurable space,
the proof is actually equivalent to the proof of a similar lemma given by
Datco [7] (if his Kt K or, equivMently, U does not depend on --since
under this condition, the metric space notions of [7] are not necessary).

Proof. Since U is compact, the range of lc(. is bounded and, by (21),
so is the range of (. ). Owing to this, we may define a sequence (indexed
by n) of finite and measurable partitions/A} of B such that U A B,
A A ;, the empty set, and such that the oscillation of ()I1
on A is less than 2-.

Let u lug, uq/ and assume that u(.), %_(.) are measur-
able and that

() (u(),--., u_(), u’(), ..., u’()).
Equation (21) implies that there are numbers a(i), ..., a’(i) such
that, for each A,

() --/u(), ..., u_(), (i), ..., (i)}
is in U and

’(0") lc(n(0")) 2-n.
The vector valued function (. ), whose first p 1 components are u(. ),
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Up__l(" ), and whose last q p -t- 1 components, gp(-), gq(. ),
take values ap(i), (qn(i) in A, is measurable. Also,

uniformly in B.
Let

lim ,(0.) k(u"(o.))[I--. 0

Up(o.) lim inf

Then up(-) is measurable. Fix 0.. Let n index a subsequence so that
p(o.) --* Up(o.) and un(o.) -- (0.), i > p. Let

vn(o") {Ul(O’), Up(if), p+l(O’), "’’},

and v(o.) lim vn(o.). V(O.) is in U and

lim (0.) ]()n(o.) O.

By continuity, "r(o-) /c(v(o.)). By induction, the lemma is proved.
THEOREM 3. Assume (A3), (A4) and (A7) to (A10). Let

x(o, t) x(o, O) -k ] A(s) z(, s) ds

()

+ Jo (u(, s)) ds + z(, t) z(, 0),

where zo(, t) O, and A (s) is a matrix with bounded and Borel measurable
components. Let (4) be the terminal condition, where T is nonrandom. Let
< be given. Define an admissible control u(., as one satisfying (AS)

and (A9) andforwhichtreisa nonran&m T ’ zch lat g(Ex(w, T) 0
and R(u < . Assume there exists one adnissible control. Then, there is an
optimal admissible control (minimizing R u

Proof. Let u(-, .) satisfy (AS) and (A9). Under the conditions on

u(., ), k(. ), A(. ), and z(., ), the existence and uniqueness w.p.1 of
solutions to (22) in [0, is a special case of Lemma 1. Also, for T < ,
(23) maxEl x(, t) K(T) < ,

tT

where K(T) does not depend on the particular admissible control used.
Let a be the infimum of R(u) over the class of admissible controls.

Then there is a sequence of admissible controls un( with corresponding
terminal times T , and with R (un) a decreasing monotonically to
a. We must show that there are a (., and a corresponding T such
that g(Ex(, T) O.
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Define

T liminfT" < < .
By the conditions on/c(. and on each un(., ),

T T

(24) E Jo ][ k(u’(’ t)) dt= Jo E k(u(w, t))[[ dt K <

where K does not depend on n. The sequence (u(., )) is uniformly
bounded (in n, , and t) since u(., is uniformly bounded and (.
is continuous. Thus

f (u(, t)) (d dt) 0

uniformly iu n s (A) 0. Owing to this and to (24) we have, by [8,
Theorem IV.8.9], that {lc(un( ., is weakly sequentially compact;
there is subsequence, lso indexed by n, nd there is (T) measurable
function (., so that, for all sets A in c(T),

and Tn T monotonically.
The rest of the proof follows a method of Roxin [4]. For any A in 2(T)

and any constant vector y,

]lub ( X dt)y(v)
vU

>= li y’(u(, t)) ( tit)

y’(, t) (d dt)

lira f y’(u(, t)) (d X dt)
A

f gb ’() ( [dt).

(Note that the arguments of the first and last integrals are constants.)
Thus, except for a set of measure zero, all (, t) in X [0, T] satisfy

(26) ub y’(v) y’(, t) gb y’(v).
vU vU

Redefine (, t) on the remaining set of measure zero so that (26)
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holds everywhere. Since U, the range of v, is a closed convex set, (26)
implies that for each (o, t) there is a number u(o, t) in U so that

(27) ,(o, t) tc(u(o, t) ).

By Lemma 2, the u(., in (27) can be defined to be measurable with
respect to 2c(T). Denote this measurable u(-, by (-, ). It will be
shown that g(., and T are the optimal control and stopping time, re-
spectively.

Let 4(-, .) correspond to g(., -). Since (22) holds for all admissible
controls, and lc(. is uniformly bounded on U, all future interchanges of
the order of integration are justified. We have

(28) Exn(o, Tn) Exn(o, T) Ex’(o,t) dt -t- Elc(u(o, t) dt--O

as n -- , since both integrands are finite, and T -- T monotonically.
Also

Ex(o, t) E$(o, t) Jo A (s)[Ex’(w, s) E(o, s)] ds + (t),

where

[E/(u(, s)) Elc((t(o, s))] ds

(the Ez(, t) terms cancel). By the weak convergence, (t) -- 0 for each
_<_ T as n -- . This and the boundedness of A (.) in [0, T] imply, by

Gronwall’s lemma, that

(29) Ex ( T)II- 0.

Combining (29) with (28) yields Ex’(o, T’) E(o, T) and, hence,
R(u’) -- R(). By the continuity of g(.), g(E2(o, T)) O, and the
proof is concluded.

Remarlc. A stronger type of convergence than the weak convergence
argument used here appears to be necessary to establish convergence of the
sample functions in general (or even of their expectations in the nonlinear
case) as was done in Theorem 1. This is the reason for restricting the
target to a set of expectations, rather than sample functions, and the linear
assumption (22). It would be useful to prove whether or not sample
function convergence is necessary, in general, in order to satisfy terninal
constraints on x(o, t).

Acknowledgment. It is a pleasure to acknowledge the anonymous assist-
ance of the referee, through whose painstaking reading several ambiguities
and errors were removed.
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EXISTENCE THEOREMS FOR OPTIMAL SOLUTIONS IN
IONTRYAGIN AND LAGRANGE IROBLEMS*

LAMBERTO CESARI
In 2 we state an existence theorem (Theorem 1) for Pontryagin.’s prob.

lem which represents a useful generalization of Filippov’s existence theorem.
In 3 we consider the more general Lagrange problem with unilateral con-
straints written in terms of a Pontryagin problem with variable control
space U(t, x) which is closed but not necessarily compact. If U(t, x) is
compact for every (t, x), then the problem reduces to a Pontryagin problem
of optimal control; if U is fixed and coincides with the whole space then
the problem is of a generality comparable to the usual Lagrange problem.
With a further particularization the problem reduces to a free problem of
the calculus of variations. For the general problem thus formulated where
U(t, x) is any closed variable set, we state existence theorems for optimal
solutions (Theorems 3 and 4), which contain as particular cases the Filippov
statement, Theorem 1, existence statements for the Lagrange problem of
the calculus of variations, and the Nagumo-Tonelli theorem for free prob-
lems. Also, we formulate existence statements (Theorems 5 and 6) for the
case where the differential equations are linear in the control variables.
Finally, we state the analogous existence theorems (Theorems 7 and 8)
for weak solutions (in the sense of Gamkrelidze) of the same general La-
grange problems with unilateral constraints (U(t, x) closed, not necessarily
compact).
Theorems 2-8 are merely stated here; their proofs will appear elsewhere.

Theorem 1 is a corollary of both Theorems 3 and 4, but it admits also of a
direct proof which is very simple and similar to Filippov’s proof. In the
Appendix we give--for the convenience of the reader--both the deduction
of Theorem 1 from Theorems 3 and 4, and its direct proof.

In other papers we shall discuss analogous problems for multidimensional
Lagrange problems with unilateral constraints involving partial differential
equations.

1. Notations for Lagrange problems with unilateral constraints.
la. Let A be a closed subset of the tx-space

x (x, x) E and for each (, x) A, let U(t, x) be a closed
subset of the u-space E, u (u, u). We do not exclude that A

* Received by the editors May 17, 1965, and in revised form August 23, 1965.
Department of Mathematics, University of Michigan, Ann Arbor, Michigan.
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coincides with the whole tx-space and that U coincides with the whole u-
space. Let M denote the set of all (t, x, u) with (t, x) A, u U(t, x).
Let ](t, x, u) (f0, f) (f0, fl, f) be a continuous vector function
from M into En+l. Let B be a closed subset of points (t, xl, t2, x.) of
E+, xl (x1, xn), x2 (x.l, x). We shall consider the
class of all pairs x (t), u (t), t -<_ t, of vector functions x (t), u (t) saris-
tying the following conditions"
(a) x(t) is absolutely continuous (AC) in [tl, t2];
(b) u(t) is measurable in [t, t2];
(c) (t, x(t)) A for every t [t, t];
(d) u(t) U(t, x(t)) almost everywhere (a.e.) in [tl, t2];
(e) fo(t, x(t), u(t)) is L-integrable in [t, t2];
(f) dx/dt f(t, x(t), u(t) a.e. in [t, t];
(g) (t, x(t), t, x(t)) B.
By (f) we mean that the n ordinary differential equations

1
dx
dt

fi(t, x(t), u(t) ), i 1, n,

are satisfied a.e. in [t, t]. Since x(t) is AC, that is, each component x (t) of
x(t) is AC, we conclude that all fi(t, x(t), u(t)), i 1,..., n, are L-
integrable in [tl, t] as f0.
A pair x(t), u(t) satisfying (a b c d e f g) is said to be admissible, x(t) is

called a trajectory, and u(t) a strategy, or control, or steering function. As
usual, U(t, x) is said to be the control space at the time and space point x.
The functional

(2) I[x, u] fo(t, x(t), u(t) dt

is clled the cost functional, and we seek the minimum of I[x, u] in the total
class 2 of admissible pairs x (t), u (t), or in some well defined subclass .
In the particular case where U(t, x) is a compact subset of E for every

(t, x) A, the problem of the minimum of I[x, u] is called a Pontryagin
problem of optimal control theory. The general case above, where U(t, x)
is a closed subset of E, for every (t, x) A, not necessarily compact, will
be denoted as a Lagrange problem with unilateral constraints. The classical
Lagrange problem corresponds essentially to the case where U E, is
the whole u-space, with the side conditions being here differential equations
in normal form.
There is a particular case of the Lagrange problem which shll be taken

into consideration, namely, m n, U E, and the vector function
f(t, x, u) given by f(t, x, u) u, or f(t, x, u) u, i 1,
m n, and hence ](t, x, u) (f0, u). Then the differential system (li
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reduces to dx/dt u, i 1, n, and the cost functional becomes

(3) !Ix] fo(t,x(t),x’(t)) dr.

This problem is called a free problem.
lb. If we denote by X the space of all continuous vector functions

x(t) (x1, xn), a =< =< b, from arbitrary finite intervals [a, b] to E,
it is convenient to define a distance function p(x, y) for elements x(t),
a _<_ -<_ b, and y(t), c <= <= d, of X, so as to make X a metric space.
For this purpose we extend x(t) in all (- , -f- ) by defining it equal to
x(a) for _<_ a and equal to x(b) for >= b, and, analogously, for y(t). We
then define

p(x, y) a c + b d + mx Ix(t) y(t) !,
where max is taken for all t, < < + . Then p is a distance function
and X is a metric space.
Every element x(t) of an admissible pair Ix(t), u(t)] is an element of X

but, of course, the converse is not true.
A class of admissible pairs is said to be complete provided it satisfies

the following property" If xk(t), uk(t), tl =< _-< t2, / 1, 2, and
x(t), u(t), h <= <= t2, are all admissible pairs, if x(t) -- x(t) in the p-metric,
and all pairs x(t), uk(t), t 1, 2, belong to , then x(t), u(t) also
belongs to . The classes usually taken into consideration in applications
are complete. The class of all admissible pairs (satisfying (a b c d e f g)) is
certainly complete.
Given any point (t0, x0) A and i > 0, we denote by N, (t0, x0) the

set of all (t, x) A at a distance =< from (to, x0). The set U(t, x) is said
to be an upper semicontinuous function of (t, x) in A provided for every
(t0, x0) A there is a > 0 such that

u(t, x) [u(t0,

for every (t, x) N(t0, Xo), where U denotes the closed -neighborhood
of U in E.

lc. In Filippov’s existence theorem [2a] the most typical requirement is
that for every (t, x) A the set

(t, x) (t, , u(t, ) I (z, z) ?(t, , u), u u(t,

{ (z, z) z fo(t, x, u), z f(t, x, u), u U(t, x)} E+I
be a convex subset of En+l. We prove here that a much weaker condition
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suffices;namely, we shall require that for every (t, x) A the set

Q(t, x) { (z, z) z :> fo(t, x, u), z f(t, x, u), u U(t, x)} E,+

be convex set of E,+. Using the set ( wehve obtinedresults for optimal
control problems comparable in generality with those obtained by Tonelli
for free problems in the cl.culus of writions. Moreover, the new theorems
cn be extended to the cse where U(I, x) is only closed (in prticu-
lr, U E), that is, for the Lgrnge problem with unilterM constraints.
In addition, the corresponding existence theorems for the Lgmnge prob-
lem contain s prticulr cse both the Tonelli-Ngumo theorem for free
problems,nd the Filippov existence theorem for problems of optimal control.

It my be noted that for free problems the sets Q, Q thought of s
subsets of the z u-spce E,+ re the sets

Q(t, x) { (z, u) z fo(t, x, u), u E,} E,+

Q(t, x) I z, u) ]z >= fo(t, x, u), u E} En+,

nd thus the convexity of Q reduces to the usual convexity condition of
f0 (t, x, u) s function of u in U (t, x) condition which is fmilir in the
cMculus of writionswhile the set ((t, x) is convex if nd only if f0 is
linear in u. This prticulr cse of the free problems lredy shows the
mount of generMity introduced by the consideration of the sets ( instead
of Q.
We mention here that u function (u), u E, is said to be convex in u,

provided u, v E,, 0 =< _<_ 1, implies (au -- (1- a)v) _<_ a(u)-- (1

2. txistence theorems for lontryagin problems.
2a. THEOREM 1. (Existence theorem for Pontryagin problems). Let A

be any compact subset of the tx-space E1 X E,, and for every (t, x) A
let U (t, x) be a compact subset of the u-space E, Let M be the set of all (t, x, u)
with (t, x) A, u U(t, x), and let f(t, x, u) (fo ,f) (fo ,fl ,f)
be a continuous vector function on M. Let U t, x) be an upper semicontinuous
function of (t, x) in A, andfor every (t, x) A let

(t, x) I$ (z, z) z ->- f(t, x, u), z f(t, x, u), u U(t, x)} En+
be a convex subset of E,+ Let B be a closed subset of the tlxtx2-space E2+
Then the cost functional I[x, u] has an absolute minimum in any nonempty
complete class of admissible pairs u(t), x(t).

If A is not compact, but closed and contained in slab It0 _-< _<_ T,
x -- , i 1,-.. n, to, T finite}, then Theorem 1 still holds
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under the additional hypotheses that
(a)*xf + + xf <= N[(x) + + (x) + 1] for ll (t, x, u) i
and some constant N 0, and
(b) each trajectory x (t) of the class t contains at least one point (t*, x (t*))
on a compact subset P of A (for instance, the initial point (tl, x(tl)) is
fixed, or the final point is fixed).

If A is not compact, nor contained in a slab as above, but A is closed,
then Theorem 1 still holds under the additional hypotheses (a), (b)
and (c)"
(c’) f0 (t, x, u) >= G for all (t, x, u) M and some constant G >= 0;
(c’) fo(t, x, u) >-_ > 0 for all (t, x, u) M with It[ N1 and some con-
stants 0, N _-> 0. Also, condition (a) can be replaced by the following
condition (d)"
(d’) fo(t, x, u) >= -G for all (t, x, u) M and some constant G >_- 0;
(d’) fo(t, x, u) >= E If(t, x, u) for all (t, x, u) i with ix[ >= E for
some constants E > 0 and F

___
0.

Condition (b) is certainly verified if for instance the projection. B of B
on the tlxl-space is compact, in particular, if the initial points (t, x(t))
of the trajectories x(t) of 2 belong to a compact subset of the same space.
The same holds if the projection B. of B on the t2x2-space is compact, in
particular if the endpoints (t2, x (t2)) of the trajectories x (t) of t belong
to a compact subset of the same space.
The existence Theorem 1 contains as a particular case Filippov’s theorem

[2a]. Indeed, in the latter it is requested that the set Q(t, x) is convex, and
the convexity of Q certainly implies the convexity of Q. Therefore, Theorem
1 contains as a particular case the analogous existence theorem proved by
Markus and Lee in [5] for f linear in u. Also, an extension analogous to the
one of Roxin [10] (see also [2b]) can be duplicated in the present more gen-
eral situation, by replacing the continuity requirement for f0 and f by
measurability and the hypothesis that f(t, x, u) -< (t)[A + B ]x I] for
all (t, x ,u) M where A, B >= 0 are constants, and (t) is a fixed function
of which is L-integrable on every finite interval.

2b. As an example of an application of Theorem 1 we may consider the
Pontryagin problem with m n 2,

(x -- y2 -- u + v -- 1) dt minimum,

* The following weaker assumption from differential equation theory would suffice.
There exist (Lyapunov-like) positive, continuously differentiable function V(x, t)
and a positive constant c such that gradxV(x, t).f(x, t, u) + OV/Ot <= cV(x, t)
for all (t, x, u) M, and the set {x V(x, t) <: o, (t, x) A} is compact for every
I wish to thnk the referee for having suggested this remark.
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U(x,y) {-1 -< u =< 1,-1 <- v =< 1},

dx dy
d’- u’ dt

v,

tl O, x(O) y(O) O, x(t.) 1, t. y(t2) undetermined.

Here A is the hMfspace (t, x, y) with >= 0, (x, y) E2. Also, B is the
closed set B /(tl, xl, y, t, x., y2) t 0, x 0, y 0, x 1},
that is, a 2-plane in E6, and B1 is the single point (0, 0, 0) of E3, certainly
a compact set, P B1, nd condition (b) is stisfied. The set

={(z,u,v)]z x + y + + v + 1, --1 u 1, --1 v 1}

is not convex, and Filippov’s theorem does not apply. Instead

u)

={ (z, u, v) ]z x + y + + v + 1, --1 u 1, --1 v 1}

is certainly convex. Finally, by the usual relution Ix] 2-(1 x),
x sclur, we deduce

xu + yv ]x] + [y] l + x + y,
and condition (a) is satisfied. Condition (c) is satisfied with G 1.
By Theorem 1 the problem above hs an optimul solution.

2c. Instead of the assumption that the sets (t, x) be convex s in
Filippov’s theorem, or of the much less demanding ssumption that the
sets Q (t, x) be convex, we may ask whether an alternate assumption would
suffice for the existence of the minimum. The question has been proposed
as to whether the joint assumption that the sets Q(t, x) fit, x, U(t, x)]
E be convex and that f0 (t, x, u) be convex in u for every (t, x) would

suffice. The answer is negative as it was proved by an example in [lc;
5] and by an easier example in [ld, I, 8]. We proved in [lb] nd [lc] that
the hypothesis Q(t, x) convex and fo(t, x, u) convex in u still guarantees
existence provided an additional hypothesis is stisfied. We expressed this
additional hypothesis by saying that the "curvature" of f is smll with
respect to the "convexity" of f0 We state below the theorem (Theorem 2)
in its precise form in order to point out its connection with Theorem 1
(see Remark nfter Theorem 2).
For every (t, x) A we shall denote by U* (t, x) the closed convex hull

of U(t,x),or U*(t,x) clco U(t,x) E, and by M* the set of
t, x, u) with (t, x) A, u U* t, x We shall assume here that ](t, x, u)
dmits of a continuous extension on the set M*, though we assume that
U (t, x) is still the control space, that is, that uny admissible strategy u (t)
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has its values only in U (t, x), that is, u (t) U (t, x (t)). The following
hypotheses (or definitions) (a), () and (,) will be needed.

(a) Hypothesis of convexity of fo. There is a nonnegative bounded and
Borel measurable function C C(t, x, u), (t, x, u) M*, with the follow-
ing property" for each e > 0 and (to, x0, u0) M*, there are a

/(t0, Xo, Uo, e) > 0 and a linear scalar function z (u) r + b- u (also
depending on to, Xo, Uo, e) such that, for every (t, z) A at a distance
N from (t0, Xo), we have

fo(t, x, u) z(u) + C(to, xo, uo, e) u Uo for all u (t,x),

fo(t, x, u) z(u) + e for all u U*(t, x) with u--u0] N .
Condition (a) is certainly satisfied if, for each (t, x) A, the function

f0 is of class C in u (u u), if the second partial derivatives
f0hk are continuous in A X U*, and if the quadratic form

F() ahkk, a a f0 (t, x, u),

where h, k 1, m, and ((1, m) is a real vector, is positive
semidefinite (positive definite if we want C > 0). Then F()
>_- Xo(h A- -4- (), where Xo >= 0 is the smallest root of the equation
det (A XI) 0, I is the unit matrix, and we can take C(t, x, u) X0/2.
Condition (a).as given above is only a generalized form of this familiar
condition, which does not require second order partial derivatives. This
generalized form of stating convexity is often used in the calculus of varia-
tions.
() Hypothesis of boundedness of the curvature of f. There exists a non-

negative bounded, Borel measurable function D D (t, x, u), (t, x, u)
M*, with the following property" for each e > 0 and (to, x0, u0) M*,

there are a 6 (to, Xo, u0, e) > 0 and a linear vector function Z(u)
R + Bu, where R is an n-vector, B is an n N m matrix, and 6, R, B

depend on (t0, Zo, u0, e), such that for each (t, x) A at a distance Nz
from (t0, Zo) we have

U*[f(t,x,u)-Z(u) e+D(to x0,u0,e) lu-u0 for allu (t,x).

Condition () is certainly satisfied if, for each (t, x) A, f(t, x, u) is
of class C in u (u1, um) with second order partial derivatives con-
tinuous in M*, and

i=l hk

a ah fih Ou Ouk’
and h ranges over all h, 1 1, m.
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Finally, we shall require certain Lipsehitz-type conditions on both the
scalar function f0 and the vector function f (’, f).
() Lipschitz-type conditions for fo and f. There are two functions

L (t, x, u), t (t, x, u), (t, x, u) M*, both nonnegative and Borel measur-
able, with points of infinity (if any) whose coordinates lie in a subset of
measure zero of E0, with the following properties"
(-/) f0(t, x, u) fo(t, x, Uo) <- L(t, x, no) u Uo [for 11 (t, x) A nd
ny two points u, u0 U* (t, x);
(-) if, for any (t, x) A, for ny n-vector z0 f(t, x, Uo), Uo U* (t, x),
nd for ny other n-vector z f(t, x, U*(t, x) ), we tke u U*(t, x) in
such a wy that z f(t, x, u), and u u01 minimum, then we hve

u uo _-<_ no) z zo I.
Condition (/) obviously does not require the monotonicity of f in the

vector u, a condition which would be impossible to verify if, for instance,
n < m. Nevertheless, if n >= m, then condition (/) is certainly verified if

f is monotone in u for every (t, x) A, and if

u u0 -< A(t, x, no) If(t, x, u) f(t, x, no)
for every (t, x) E A and any two u, u0 U* (t, x). We sy that f(t, x, u) is
monotone in u if u, Uo U*(t, x), u Uo, implies f(t, x, u) f(t, x, Uo).

2d. THEOnn 2. (Existence theorem for Pontryagin problems). Let A be
any compact subset of the tx-space E1 X E, and for every (t, x) A let
U(t, x) be a compact subset of the u-space E,. For every (t, x) A let
U* (t, x) be the closed convex hull of U(t, x), and let ](t, x, u) (fo, Y)

(fo, f, fn) be a continuous vectorfunction on M*. Let U (t, x) be an

upper semicontinuous function on M, and for every (t, x) A let

Q(t, x) {z z f(t, x, u), u U(t, x)} c E,

be a convex subset of E, Let hypotheses (a), (), (’) be satisfied and assume
that

A(t, x, u)L(t, x, u)D(t, x, u) _<: C(t, x, u), (t, x, u) M*,
where equality holds at most on a set of points (t, x, u) M* whose coordi-
nates lie in a subset of measure zero of E. Let B be a closed subset of the
txtx-space En+: Then I[x, u] has an absolute minimum in any nonempty
complete class of admissible pairs u(t), x(t).

If A is not compact, but closed and contained in a slab It0 -_< _-< T,
x + , i 1, n, to, T finite}, then Theorem 2 holds under

the additional hypotheses (a), (b) at the end of Theorem 1. I A is not
compuct, nor contained in any slab as bove, but A is closed, then Theorem
2 still holds under the additionM hypotheses (a), (b), nd (c) at the end
of Theorem 1. Finally, condition (a) can be replaced by condition (d) at
the end of Theorem 1.
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A series of examples concerning the use of Theorem 2 has been given in
previous papers [lb], [lc]. For a direct proof of Theorem 2 we refer to [lb].

Remar/c. Whenever the condition ALD < C of Theorem 2 implies that
the set Q (t, x) of Theorem 1 be convex, then Theorem 2 becomes a particu-
lar case of Theorem 1. For instance, assume that m n and that the trans-
formation z f(t, x, u) is one-to-one and admits a continuous inverse
u f-1 (t, x, z). Then can be defined as the set (t, x) (z, z)
z >- F(t, x, z), z C Q(t, x)}, where F(t, x, z) f(t, x, (t, x, z)). In this
situation the requirement of the convexity of Q(t, x) reduces to the re-
quirement of the convexity of the function F in z. If m n 1, if for
any (t0, x0, z0) we have, in a neighborhood of u0,

f0(t0, x0, ) zo + l(u- uo) + 2-c(u- o) + ...,
z f(t0, x0, u) z0 + x-(u u0) + 2- d(u Uo) + ...,

with c > 0, ),l d < c, X 0, and the second relation can be inverted, then
in a neighborhood of z0 we have

u u0 + X(z z0) 2-Xd(z Zo) + ...,
)F(to,xo,z) Zo -k l(z Zo) -- 2-1X2(c Xld)(z--z0 q- "’.

Thus, the condition that Xld < c implies that F is convex in z at z0, and hence
everywhere, since z0 is arbitrary, and Q(to, xo) is a convex set.

3. Existence theorems for Lagrange problems with unilateral constraints.
3a. We shall use the same notations as in i, 2, but we shall now assume

that the sets U(t, x) and Q (t, x) are not compact but only closed. The
usual condition of upper semicontinuity need be replaced by slightly more
general conditions, namely condition (U) for the sets U(t, x) and prop-
erty (Q) for the sets Q (t, x). Given a set E, we shall denote by el E, co E,
bd E OE, int E the closure, the convex hull, the boundary, and the
subset of the interior points, respectively, of . Thus cl co E denotes the
closure of the convex hull of E.
As usual, let A be a closed subset of the tx-space E1 X E. For any

(to, x0) C A and/ 0 let N(to, Xo) denote the set of all (t, x) A at a
distance __< from (t0, x0). For any point (t, x) A let U(t, x) be a closed
nonempty set of the u-space Era. For any (to, x0) A let U(to, Xo, )
denote the set U(to, Xo, ) [.] U(t, x), where the union is taken for all
(t, x) N(to, xo). We shall say that U(t, x) satisfies property (U) at the
point (to, x0) of A if

U to x0) fl cl U to xo
o

We shall say that U (t, x) satisfies property (U) in A if U(t, ) satisfies
property (U) at every point (to, x0) of A. We shall say that U(t, x) sat-
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isfies property (Q) at the point (to, x0) of A if

U(to x0) [’1 clco U(to Xo ).
>0

We shall say that U (t, x) satisfies property (Q) in A if U (t, x) satisfies
property (Q) at every point (t0, x0) A.

Sets U(t, x) satisfying property (U) are necessarily closed; sets Q(t, x)
stisfying property (Q) are necessarily closed and convex. Both properties
(U) and (Q) are generalizations of the usual upper semicontinuity in the
tollowing sense. If the sets U(t, x) are closed and upper semicontinuous,
then they satisfy property (U); if the sets U(t, x) are closed, convex, and
upper semicontinuous, then they satisfy property (Q). On the other hand,
there are closed sets U(t, x) satisfying property (U) which are not upper
semicontinuous, and there are sets U(t, x) which are closed, convex, and
satisfy property (Q) which are not semicontinuous. An example of this last
occurrence is given by U(t, x) u (u1, u2) O <-_ u <= tu, 0 <-_ u
<2 --l, where0 <_- <= 1,0 <= x <= 1.

3b. TEOREM 3. (Existence theorem for Lagrange problems with or
without unilateral constraints). Let A be any compact subset of the tx-space
E1 }( En and for every (t, x) A let U t, x) be a closed subset of the u-space
E,. Let M be the set of all (t, x, u) with (t, x) A, u U (t, x), and let
](t, x, u) (fo f) (fo fl fn) be a continuous vector function on M.
For every t, x) A let

O(t, x) l (z, z) z >= fo(t, x, u), z f(t, x, u), u U(t, x)} E+,

be a closed convex subset of En+. Let us assume that U(t, x) satisfies con-
dition (U) in A, and that Q(t, x) satisfies condition (Q) in A. Let (z),
0 <= z < - , be a given continuous function of z satisfying the relation
(z)/z -- + as z ---. - , and assume that fo (t, x, u) >= (I u I) for all
(t, x, u) M. Also, let C, D be constants and assume that f(t, x, u) C
D u Ifor all (t, x, u) M. Let B be a closed subset of the txtx2-space

In+. Then the cost functional I[x, u] has an absolute mininum in any
nonempty complete class of admissible pairs x(t), u(t).

If A is not compact, but closed and contained in a slb It0 -<_ -< T,
< x < - , i 1, m, to, To finite/, then Theorem 3 holds under

the additional hypotheses (a) and (b) at the end of Theorem 1. If A is not
compact and not contained in any slab as above, but A is closed, then
Theorem 3 still holds under the additional hypotheses (a), (b), (c) at the
end of Theorem 1.

Also, condition () can be replaced in either case by condition (d) at
the end of Theorem 1. Finally, for A not compact but closed, the conditions
f0 >= (lu I), Ill -<- C + D ul above can be replaced by the following set
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of conditions"
(e) fo(t, x, u) >=_ -L for all (t, x, u) M and some constant L;
(f) fo(t, x, u) >- > 0 for all (t, x, u) M with It] >_- R, and some con-
stants u > 0, R >= 0;
(g) for every compact subset A0 of A there are functions 0 as above and
constants Co >= 0, Do >_- 0 (all may depend on A0) such that f0 >_- 0(I u I),
If] --< Co + Do u for all (t, x, u) M with (t, x) C A0.
For a proof of Theorem 3 we refer to [ld].
For free problems, that is, m n, f t, x, u) u, U E the condition

fl =< C -- n [u is trivially satisfied with C 0, D 1, the set (t, x)
reduces to

(t, x) I (z, u) z >= fo(t, x, u), u E} c En+l,

and the hypothesis of convexity of Q reduces to the usual convexity of
fo(t, x, u) with respect to u in E. In addition., this convexity and the
growth condition fo(t, x, u) >= (] u I) together assure that (t, x) satisfies
property (Q) in A (see the proof in [ld]). Thus, Theorem 3 contains as a
particular case the Nagumo-Tonelli existence theorem for free problems
[6], [11].

3c. TIEOREM 4. (Existence theorem for Lagrange problems with uni-
lateral constraints). Let A be any compact subset of the tx-space E X E,
and for every (t, x) A let U(t, x) be a closed subset of the u-space E,. Let
M be the set of all (t, x, u) with (t, x) A, u U (t, x), and let ](t, x, u)

(fo, f) (fo, f, f,) be a continuous vector function on M. For every
(t, x) A let

Q(t, x) { (z, z) z >= fo(t, x, u) z f(t, x, u) u . U(t, x)} 1,+

be a closed convex subset ofE+ Let us assume that U t, x) satisfies condition
(U) in A and that Q(t, x) satisfies condition (Q) in A. Let q(t) be a given
Junction, which is L-integrable in any finite interval, such that fo(t, x, u) >= (t)
for all (t, x, u) M. Let B be a closed subset of the txtx.-space E.n+. Let

be a nonempty complete class of admissible pairs x(t), u(t) such that

ftdxl idt N, 1,...,n,

for some constants p 1, N >= O. Then the cost functional I[x, u] has an
absolute minimum in .

If A is not compact, but closed and contained in a slab {to =< __< T,
x + , i 1, n, to, To finite}, then Theorem 4 holds under

the additional hypothesis (b) at the end of Theorem 1. If A is not compact,
nor contained in any slab as above, but A is closed, then Theorem 4 still
holds under the additional hypotheses (b) and (c*)"fo(t, x, u) >= (t) for all
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(t, x, u) M, where (t) is a given function which is L-integrable in any
finite interval and

-t-o -- oO fOfo q d d --Finally, if for some i 1, n, nd ny N > 0, there is some N > 0
such that (x, u) , I[x, u] N implies

tdxiPt
dtN,

then the corresponding requirement (4) cn be disregarded.
For proof of this theorem we refer to [ld].
3d. Existence theorems for Lagrange problems with f linear in u. We

state here two corollaries of Theorems 3 and 4 for Lagrange problems with
f linear in u and no unilateral constraints. For the ske of simplicity we take
into consideration only a particular type of boundary conditions.
THnonn 5. Let us consider the Lagrange problem

(5) I[x, u] [g(t, x)(u) + go(t, x)] dt minimum,

(6) dz g(t, x)u + g(t, x) i 1, n,
dt =

where x (x, x) E u (u, u) E andS(u) denotes a
continuous nonnegative convex function of u (u, u). Assume that
there is some continuousfunction (z), 0 z < + , such that (z)/z +
as z - + and u u ]) for every u E Assume that all g t, x
go(t, x), g](t, x), g(t, x) are continuous functions of (t, x) in E E, such
that

> o, + c 0,

for given constants > O, C > 0 and all (t, x) E E, Let be the class
of all pairs x (t), u (t), t t, x (t) absolutely continuous, u (t) meas-
urable, satisfying (6), and such that the graph (t, x(t) joins the fixed point
(t O, x(t) (0, ,0)) to a given closed subset B of the halfspace

O, x E, of E X E,. Then the Lagrange problem above has an optimal
solution in .
The function (u) ([ u ) [u ]’, u E, p > 1, certainly stisfies

the requirements above for . The requirement g0 u > 0 cn be disre-
garded if B is contained in slb {0 T, x E, T finite}.

For detailed proof of this statement s corollary of Theorem 3, see
[ld]. In the course of the proof it is shown that the subset Q(t, x) of E,+
relative to the problem above is convex for every (t, x) A nd stisfies
condition (Q).
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THEOREM 6. Let us consider the Lagrange problem

() I[z, ] [g(t, z).() -t- go(t, z)] dt minimum,

(6) dx gi,(t, x)u -- gi(t, x), i 1, n,
dt j=l

or dx/dt H(t, x)u 4- h, where x (xl, xn), u (ul, u’),
H (gj), h (g), and q(u) is a continuous nonnegative convex function
of u in E, Assume that the (convex) set (t, x) (z, z) z >= gq (u)
A- go, z Hu -4- h, u En} satisfies condition Q Assume that all g t, x
go(t, x), g.ij(t, x), g(t, x) are continuous functions of (t, x) in El. X E, such
that

g(t, x) >-0, go(t, x) -Go for all (t, x) E X E
go t, x >= > 0 for all t, x E1 X E, with It[ Do,

for some constants > O, Go >= 0, Do >= O. Let be the class of all pairs
x(t), u(t), tl <= -< t2, x(t) absolutely continuous, u(t) measurable, such
that the graph (t, x(t) joins the fixed point (tl O, x(6) (0,..., 0))
to a given closed subset B of the halfspace >__ O, x . E, of El X En and
such that

(7) i n,-- dt <_ N, 1,

for some constants p > 1, N >= . If is not empty then the Lagrange problem
above has an optimal solution in .
The requirement go >- > 0 can be disregarded if B is contained in a

slab l0 =< =< T, x E, T finite}.
If g(t, x) => > 0, where t is a constant, and if q(u) _-> (I u [), where

e(z), 0 <_- z < A- , is a nonncgative function of z with e(z) -- + as
z -+ -4- , then Q certainly satisfies condition (Q).

Also, any of the n requirements (7) which is a consequence of a relation
of the form

’ [g - go] dt <_ N,

can be disregarded. For a detailed proof of Theorem 6 as corollary of
Theorem 4, see [ld]. We shall denote by r r(t, x) the rank of the matrix
H(t, x).
Example 1. Let us consider the (free) problem

I[x] (1 A-Ix’ 12) dt minimum,

with x (x1, xn) in the class t of all absolutely continuous functions
x(t) (xX, ,x’), 0 =< =< t2, whose graph (t, x(t)) joins the point
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(tl O, x(tl) (0, 0)) to a nonempty closed subset B of the half-
space t2 >-_ 0, x E. This problem can be written as a Lagrange problem
with

J[z,]-- (1 +l(g) d minimum,

dx
dt

u, i 1, ,n,

where x(t) (x1, zn), u(t) (u1, un) 12,m=n, fo= 1-[- lu
fi ui, i 1, n, and the control space U(t, x) is fixed and coincides
with the whole space E. Here (t, x) {(z, u) z ->_ 1 -- u 12, u E}
is a fixed and convex subset of E,,+. The conditions of Theorem 5 are
satisfied with g 1, go 1, (u) (lu]) ul2, or(z) z,
0 =< z < +,A {(t,x) lt _-> 0, z E} E+,gi 1, g. 0for
i j, g 0. Thus, the problem bove hs n optimal solution.
Example 2. The (free) problem

I[x] Jo tx’ dt minimum, x(0) 1, x(1) 0,

is known to have no solution [11c, vol. 3, p. 91]. The same problem written
as a Lagrange problem

J[x, u] f tu dt minimum, x(0) 1, x(1) "--0,
.o

dx
dt

u, u U- El,

gives rise to sets Q"

(t) { (z,z) Iz >= tu,z u, u EI E., 0 <= <= 1,

which are convex and do satisfy property (Q) (g t, go 0, gl 1,

gl 0, constant rank r 1). The same problem written as a Lagrange
problem

J2[x, u] f tu dt minimum, x(0) 1, x(1) 1,
.o

dx
tu, u U =E,

dt

gives rise to sets

(t) { (z, z) lz >= tu, z tu, u El} E, 0_<_t_<_l,

which are still convex but do not satisfy property (Q). Indeed, for 0
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we have (0) l(z, z) [z >= 0, z 0}, that is, the positive half z-axis,
while each set )(t) for > 0 is the set of all points (z, z) E above or
on the line z tz", and then lscl co O(t, 8) P is the entire positive
halfplane z >= 0, thatis, (0) P. (Note thatg 3,g0 0, gll t,
gl 0, hence, r 0fort 0andr 1 for0 < -<_ 1. Thus, risnot
constant in any neighborhood of 0, and g 0 at 0.) In either case
J1, or J, the growth condition f0 ->- o(I u I) with ,(z)/z ----> q- as
z -- q- is not satisfied at 0. The problem

I[x] Jo tx’ dt minimum, x(0) 1, x(1) O,

x’ dt <= No,

for any given constant No >_- 1, has an optimal solution. Indeed as
grange problem (J minimum, dx/dt u, u E), it stisfies the con-
ditions of Theorem 6. Of course, the optimal solution and the value of the
minimum my depend on No. The class t is not empty for No >_- 1 since,
for x(t) 1 t, we hve

x’ dt 1.

3e. Existence theorems for weak solutions. Instead of considering the
usual cost functional, differential equations and constraints,

I[x, u] fo(t, x(t), u(t) ) dt,

dx f(t, x(t),u(t)), f (f, ,f),
dt

(t, x(t) A, u(t) U(t, x(t)), (tl x(tl), t, x(t)) B,

we have to consider the new cost functional, differential equations and
constraints,

J[x, p, v] go(t, x(t), p(t), v(t) dt,

g(t, x(t), p(t), v(t)),

(t, x(t)) A,

(tl, x(t), t, x(t)) B,

Here x (x1,...,xn), p
v (u(J) j 1,... ,)

(p(t), v(t)) I’ X V(t, x(t)).

(pj, j 1,...,v), v >-_ n
F =--- {PlP >- O, p +... + p
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u() U(t, x), and therefore the new control variable (p, v) takes on its
values in the set F X V (t, x), where V [U] is the logic product of U
by itself taken times. In other words, v(t) (u(1), u
finite system of => n -t- 1 ordinary strategies u(1), u(), each u()

having its values in U, that is, u() (t) U(t, x(t) c E, j 1, ,.
Thus, v (u(1), u()) is a vector variable whose components u()

u() are themselves vectors with values in U(t, x) Era, hence
v (t) V (t, x (t)) Em. Above, p (t) (pl, pv) represents a prob-
ability distribution; hence p is an element of the simplex I’ E defined
above, and for the new control variable we have (p(t), v(t))
X V(t, x(t)) E+,. As usual, we denote by g and the two vectors
g (gl,’", g), (go, gl,’--, g) (go, g), and then

g(t, x, p, v) pfi(t, x, u()), i 0,1,..-,n.

As usual, we require that all functions p(t), u() (t) are measurable, and
that x (t) is absolutely continuous.
We say that [p(t), v(t)] is a generalized strategy, that p(t)
(pl, p) is a probability distribution, and that x(t) is a generalized

trajectory. We shall also say for the sake of brevity that [x (t), p (t), v (t)
is a weatc solution.

If we introduce, as usual, the auxiliary variable x with initial values
x(h) 0, and the vector 2 (x, x) (x, x, xn), then instead of
the system d2/dt ], we shall consider the system

d2 O(t, x(t), p(t), v(t)), (go, g) (go, gl, gv),
dt

and as usual we have

J[x, p, v] x t

Instead of the usual sets Q(t, x) f[t, x, U(t, x)] E. and

(t, x) ](t, x, U(t, x)

l (o, ) 1 ](t, , u), u u(t, )} E+,

we shall now consider the sets

R(t, x) g[t, x, r X V(t, x)]

{zlz g(t, x, p, v), (p, v) r X V(t, z)} E,

(t, x) O[t, x, r v(t, x)]

{ (z, z) 12 ((t, x, p, v), (p, v) r X V(t, x)} E+.
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Since

/(t, U(’))
’--I

p r, u() U(t, x),j 1, },
with ->_ n -- 1, we see that (t, x) is the convex hull of the set )(t, x) in
E+I, and hence/(t, x) is always convex. For weak solutions there is no
reason to consider sets analogous to the sets (t, x). Any usual admissible
pair [x(t), u(t)] can be thought of as a generalized element [y(t), p(t), v(t)]
by taking p(t) 1/,, j 1,..., , u()(t) u(t), and then y x,
y x,J I.

Let 2 be the class of ll admissible pirs, sy [2 (x, x), u(t)], stis-
lying differential equations, constraints, nd boundary conditions, nd
let 2" be the class of ll generalized elements [(t) (y0, y), p(t), v(t)]
stisfying the corresponding differential equations nd constraints, nd
the sme boundary conditions. As mentioned bove we hve 2 t*. If

i inf I[x, u], j inf J[y, p, ],

then 2 2" implies i >__ j.
It is firly generM phenomenon that generalized triectories nd corre-

sponding vMues of J cn be pproached by means of usual trajectories nd
corresponding wlues of I, so that i j. We shll sy tlmt property (P)
holds whenever i j.
Under the hypotheses that A E E, that U(t, x) depends on

only, that U(t) is compact for every t, that U(t) is an upper semicontinuous
function of t, that ] stisfies Lipschitz condition, and that is the class
of all dmissible pirs x (t), u (t) (stisfying the differential equations, the
constraints, nd the given boundary conditions), Gmkrelidze [3] has
proved that property (P) is always vlid.

In the present more general situtionA ny closed set, U(t, x) de-
pending both on nd x, U(t, x) closed, U(t, x) stisfying condition (U),
2 ny given class of admissible pirs x(t), u(t) proof of property (P),
that is, that i j, is much more diificult. Prticularly the condition that
U(t, x) depends on both nd x gives rise to number of difSculties.
Nevertheless, we were ble to prove property (P) under set of simple
requirements which re stisfied in most cses and which re esier to
verify thn property (P). We refer to [ld] for the requirements nd for the
corresponding statement, which contains the remark of Gmkrelidze s
prticulr cse.
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Analogously, in Existence Theorem 8 we shall denote by 0 the class of
all usual admissible pairs [2(t) (x, x), u(t)] of ft satisfying the given
inequalities - dt <= N, i 1, ,n,

for certain constants N >= 0, p > 1, and we shall denote by ft0* the class
of all generalized elements [(t) (yO, y), p(t), v(t)] of * satisfying the
same inequalities. Then 0 c 0". If i0 and j0 denote the infimum of I in
0 and the infimum of J in 0, then again we have i0 ft. We shall say
that property (P0) holds whenever i0 j0. We have proved that simple
requirements analogous to the ones for (P) assure that also property (P0)
holds (see [ld]).
For definitions of generalized or weak solutions slightly different from

the one of Gamkrelidze used above, we refer to Young [14], McShane [4],
Warga [12], and Wazewski [13]. Property (P) is proved by Warga and
Wazewski under assumptions different from Gamkrelidze’s.
THEOREM 7. (Existence theorem for weak solutions). Let A be a compact

subset of the tx-space E X E let U(t, x) be a closed subset of E for every
(t, x) A, and let ](t, x, u) (fo f) be a continuous vector function
on the set M of all (t, x, u) with (t, x) A, u U(t, x). Let us assume that
there is some continuous scalar function (z), 0 z < , with (z)/z
+ as z + , such thatfo(t, x, u) (]u[) for all (t, x, u) M and
that there are constants C, D 0 such that f(t, x, u) C + D[u[ for
all (t, x, u) M. Let B be a closed bset of the txtx-space E+. Let us
assume that U(t, x) satisfies property (U) in A, lhat [(t, x) satisfies property
(Q) in A, that property (P) holds, and that is not empty. Then the infimum
i of I[x, u] in is attained by a weak solution (lhat is, i is attained by J[x, p, v]
in the class *).
When A is not compact, but closed, then the theorem still holds under

he additional hypotheses stated at the end of Existence Theorem 1.
THEOREM 8. (Existence theorem for weak solutions). Let A be a compact

subset of the tx-space E X E, and for every (t, x) A let U(t, x) be a
closed subset of the u-space E. Let ](t, x, u) (fo, f f) be a con-
tinuous vector function on the set M of all (t,x,u) with (t,x) A,
u U(t, x). Let B be a closed subset of the txtx-space E+. Let us assume
that the set U(t, x) salisfies property (U) in A, and that the set (t, x) satisfies
property (Q) in A. Let us assume that fo(t, x, u) -Go for some constant
Go 0 and all (t, x, u) M. Let o be the class of all admissible pairs
[2(t) (x, x), u(t)] of satisfying the inequalities

(7) i n,dt N, 1,-..,
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for some constants N >= 0, p 1, and let o* be the analogous subclass of all
generalized elements [?(t) (yO, y), p(t), v(t)] of * satisfying the same
inequalities. Assume that o is not. empty, and property (P0) holds. Then the
infimum i of I[x, u] in o is attained by a voea solution (that is, i is attained
by J[y, p, v] in o*).
When A is not compact, but A is closed, then Theorem 8 still holds under

the additional hypotheses stated at the end of Theorem 4. As for Theorem
4, every inequality (7) which is a consequence of an inequality of the form
J =< Ncan be disregarded.

4. Appendix.

4a. Deduction of Theorem 1 from Theorems 3 and 4. First let us con-
sider the case of A compact. Under the conditions of Theorem 1 and A
compact, M is also a compact set, and hence fo(t, x, u)] __< N,
If(t, x, u) <- N for some constant N and all (t, x, u) M. On the other
hand we know that U(t, x) satisfies condition (U) (see 3a). Also, ((t, x)

](t, x, U(t, x)) is necessarily compact and upper semicontinuous, and so
is the set ((t, x) ((t, x) Cl {z <= N}. If Q(t, x) is convex, then ((t, x)
is convex, compact, and upper semicontinuous, hence Qr(t, x) satisfies
property (Q) (3a), and so obviously (t, x) does also. Finally, because
of the boundedness of f0 and f, the growth conditions of Theorem 3, say,
f0 >= ([ u I), [/[ -< C + D]u [, are trivially satisfied. Thus, for A compact,
Theorem 1 is a corollary of Theorem 3. Analogously, dx/dt f,
i 1,..., n, almost everywhere, implies ]dx/dt] <= N, and relations
(4) are trivially satisfied. Thus, for A compact, Theorem 1 is a corollary
of Theorem 4 also. For A closed and hypotheses (a), (b), or (a), (b), (c),
we can reduce A to a convenient compact subset A0 of A by well-known
arguments which are given at the end of 4b below. Thus, Theorem 1 is a
particular case of Theorem 3 as well as of Theorem 4.

4b. Direct proof of Theorem 1. Since A is compact and U(t, x) is compact
for every (t, x) and an upper semicontinuous function of (t, x) in A, we
deduce that M is compact; hence (t, x, u) is bounded on M, say,
If(t, x, u) -< N for all (t, x, u) M.
Let us consider the auxiliary variables u and x, and let g be the (m -t- 1 )-

vector (u, u) (u, u1,..., um),and2bethe (n-t- 1)-vector
2 (x,x) (x,x1,.-.,x). For every (t,x) A let U(t,x) bethe
compact set

O(t, x) {t (u, u) N >= >: fo(t, x, u), u U(t, x)} c E.+I,

let]0(t, x, ) be defined by]o(t, x, (t) u, and let ] t, x, (t) bethe (n -}- 1)-
vector function](t, x, ) (]o, f) (o f f), which is continuous
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for all (t, x, ) with (t, x) ff A, (u, u) U(t, x), and

]o(t, x, t) ]o(t, x, t) , ](t, x, t) f(t, x, u), i 1, n.

Let J[x, ] be the auxiliary cost functional

J[x, t] u dr.

We introduce for x the auxiliary differential equation and initial con-
dition

d ]o(t, , ) u.x (t) O,
dt

Now the set (t, x) (precisely the part of with u -<_ N) has the following
simple interpretation

(t, x) {2 (z, z) IN >= z >= fo(t, x, u), z f(t, x, u),

u u(t, x)}

(8) 12 (z,z) z u,z =f(t,x,u),

N >- u >- fo(t, x, u), u U(t, x)}

{ (z, z) l ](t, , ), (u, ) (t,
](t, x, (t, x)),

in other words, is the image of with respect to ].
For each pair x(t), u(t) which is admissible for I[x, u], we let correspond

the pair 2(t) (x, x), (t) (u, u) with

dxdx u(t) fo(t, x(t) u(t) f(t, x(t) u(t)
dt dt

(t,x(t)) A,u(t) U(t,x(t)),
and hence (t) U (t, x (t)), that is, the pair 2 (t), (t) is admissible for
J[x, ] with J[x, ] I[x, u]. Conversely, if 2(t) (x, x), (t(t) (u, u)
is admissible for J[2, ], then

dxdx u(t) > fo(t, x(t) u(t) f(t, x(t) u(t)
dt dt

with (t, x(t)) A, u(t) U(t, x(t)), and -N fo(t, x(t), u(t))
=< u(t) _-< N. Thus fo(t, x(t), u(t)) is L-integrable, and (x(t), u(t)) is an
admissible pair for I[x, u] with J[x, (t] >__ I[x, u].
Now let i be the infimum of I[x, u] in . Then i is finite, and we may take

a (minimizing) sequence x(t), u(t), t _-< <_- t.,/ 1, 2, of ad-
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missible pairs (for I) with I[xk, uk] ---> i. If we consider the corresponding
pairs 2(t) (x, x), (t) (uk, u) relatively to J we have

uk(t) fo(t, xl(t), u(t) ), uk(t) U(t, x(t) ),

f(t, u (t)
dt u (t) fo(t, x(t), u(t)),

dt

Since fo(t, xk(t), u(t)) <= N, If(t, x(t), u(t)) <- N, (t, x(t)) A,
x(t) <= ND, where D is the diameter of A, we conclude that the sequence

2(t), tlk -< __< t2k,/c 1, 2, is equibounded and equicontinuous, and
by Ascoli’s theorem there exists a subsequence, say still xk(t), which is
convergent in the p-metric toward a continuous vector function

(20, x), tl __< __< t2, and 2 (t) is also Lipschitzian. The usual Filippov’s
argument [2a] applied to J assures now--in view of (8)--that 2(t) is
trajectory for J, that is, there is a measurable vector (t) (u, u) with

dx dx
dt

u (t) >= fo(t, x(t), u(t) ),
dt

f(t, x(t), u(t) ),

(t,x(t)) A, u(t) U(t,x(t)).
Thus x(t), u(t) is admissible for I and even belongs to since It is com-
plete. Thus

i J[2, t] (t) dt >= fo(t, x(t), u(t)) dt I[x, u] >= i,
tl

where i is finite. Thus, we must have u(t) fo(t, x(t), u(t) almost every-
where in [t, t2], and

i J[2, t] (t) dt fo(t, x(t), u(t)) dt I[x, u] i,

that is, i is attained by I[x, u] in . This proves Theorem 1 in the case A is
compact. For A closed and contained in the slab It0 _<- _<_ T,--- , i 1, n, to, T finitel we deduce from hypotheses (a) and
(b) that

o <__ Ix(t)I + <= [I x(t*)I + C(T -to),

and since (t*, x(t*)) P, where P is a given compact subset of A, we con-
clude that x (t) <= Do for a convenient constant Do. Then we may restrict
A to the subset A0 of all (t, x) A with x Do, and A0 is compact.

Let us consider now the last case, where A is any closed subset of
E X E, but the additional conditions (a), (b), and (c) hold. Let (t),

(t) be an admissible pair contained in , and let j denote the corresponding
value of the cost functional. Let D be a number large enough so that D >= N,
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and the interval [-D, D] contains in its interior the projection P0 of P on
the t-axis. Let L u-112 DG -t- Jl at. 1], and Do D -4- L. If any ad-
missible pair x (t), u (t), tl -<_ <= t2, of ] possesses a point (t0, x (t0)) with

to > Do, then x (t) possesses also a point (t*, x (t*)) P with tl <_- t* =< t.,
t*l =< D. Thus, there is a subare r of (t, x(t)), t’ <= -<- t", along which

]t _<_ D and f0 -> -G, while on the remaining part, say E, of (t, x (t)) we
have N1, f0 >_- t > 0, and E contains at least one interval of length
L. Then

I[x, u] fo dt + fo dt >- -2DG + tL

]ji-t-l>-j+l.

Since we are seeking the minimum of I[x, u], there is no reason to consider
those pairs x (t), u (t) of a for which I[x, u] --_ j A- 1. Thus, we may restrict
A to the closed subset A0 of all (t, x) A with tl =< Do, and we are re-
duced to the previous case.
Let us prove now that condition (a) can be replaced by condition (d).

There are numbers E > 0, F >_- 0 such that fo(t, x, u) >- E If(t, x, u)l for all
(t, x, u) M with Ix >_- F. Let us assume first that A is closed and con-
rained in a slab {to -<_ N T, x E} as above, and that condition (b) holds.
Let us take the number F _>- 0 so large that the projection P* of P on the
x-space E is completely in the interior of the solid sphere xl =< F, and
also so large that F >__ T to. Let (t), g(t) be an admissible pair con-
rained in 2, and let j denote the corresponding value of the cost functional.
Let L E-(FG -4- Jl - 1), and let us take F0 F -- L. If any admis-
sine pair x (t), u (t), h =< __< t, of ft possesses a point (t0, x (t0)) with
]x(t0)] >= F0, then x(t) possesses also apoint (t*, x(t*)) P, with
h _-< t* __< t., x (t*) =< F. Thus, there is at least one subare r :x x (t),
t’ =< _<_ t", of the graph (t, x(t)) along which x(t) >= F and x(t)
passes from the value F to the value F0 F -4- L. Such an arc I’ has a
length => L. If E denotes the part of [h, t.] not covered by [t’, t"], then

I[x, u] fo dt + fo dt >= -FG + E f] dt

dx
dt >= -FG -1- EL >- ]Jl + 1.-FG A" E ft,,,

Since we are seeking for the minimum of I[x, u] in ft there is no reason to
consider those pairs x(t), u(t) of t2 for which I[x, u] >= j -4- 1. Thus, we
may restrict A to the compact subset A0 of all (t, x) A with x __< F0
F A- L. We shall now consider the case in which A is not compact, nor is



EXISTENCE THEOREMS 497

A contained in. any slab as above, but A is closed and conditions (b), (e),
(d) hold. The previous argument proves that we can limit ourselves to
the part A1 of all (t, x) A with -L1 =< _<_ L1 for some L1 sufficiently
large, and then the argument above applies again.
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SUFFICIENT CONDITIONS FOR THE OPTIMALITY
OF A STOCHASTIC CONTROL*

HAROLD J. KUSHNERf

1. Introduction. This paper is concerned with the optimal control of
diffusion processes governed by vector stochastic differential (Ito) equa-
tion, where both the control and the equation coefficients are subject to
local Lipschitz conditions, and the terminal time is the (random) time of
entrance into a given set. In 2, theorems giving a sufficient condition for
optimality are proved. The theorems are based on some results of Dynkin
[1] and are more general than the corresponding theorems in [2], in that
compactness of the state space is not required. The sufficient condition is a
stochastic analog of the Hamilton-Jacobi equation approach for deter-
ministic systems.

In 3, we obtain the optimal control corresponding to a stochastic version
of a minimum average time problem in [3]. Section 1 contains some intro-
ductory material, and the problem formulation. We note that some of
these results have been obtained (by the author and others) by a formal
application of dynamic programming, but the work here is believed to be
the first (excepting results in [2]) nonformal approach.

The problem formulation. The control system is governed by the vector
stochastic differential equation

(1.1) dx f(x, u) dt + r(x, u) dz,

where z is a vector of independent Brownian motion processes, z(x, u)
is a matrix and u is the control, u will be a function of x only, but the func-
tional dependence will usually be suppressed for notational simplicity.
Define the matrix S(x, u) with components Sii(x, u) by

{&.(, u)} S(x, u) (x, u)g(x, u),

where the prime represents the transpose. Let xt be the value of x at
time t, and xi and x,, i => 1, the ith component of x and its value at t,

112respectively. Define x (x’x) 11 and z (i,j zij) The range
of xt is in a Euclidean space E.

If f(x, u), a(x, u), and u(x) satisfy a uniform Lipschitz condition in all
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tional Aeronautics and Space Administration under Grant No. NGR-40-002-015 and
in part by the United States Air Force through the Office of Scientific Research under
Grant No. AF-AFOSR-693-65.
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their arguments, then it is well-known that, w.p.1 (with probability one),
there is a unique solution to (1.1) which is a Markov process and has
continuous paths in the time interval [0, ).
A random variable r is said to be a random time (or Markov time) for

a Markov process xt if the event r < t} for any can be verified by observ-
ing x8, s =< (/ < t} is in the -field generated by x8, s _<- t). The constant
is a random time. If rl and r. are random times, then so is

Let G be an open set with compact closure in E. Then the r of (1.2) is
random time ((1.2) has the interpretation that, if xt G for all
then rl ; otherwise r is the first exit time from G).

(1.2) r inf lt’xt G}.

Now, let f(x, u), u(x), and z(x, u) satisfy a local Lipschitz condition;
i.e., for x and x -- t} in any compact set, there is a K < (depending
on the set) such that

for x, x -- , u, u - t in any compact set, there is a K < (depending on
the set) so that

Thus u(x),f(x, u(x)), and z(x, u(x)) satisfy a uniform Lipschitz condition
in x in the set G. Let 1 be given by (1.2). The solution process xt is defined,
unique and continuous (w.p.1) for < r. In fact, the process xt for -_<
does not depend on the values off(x, u), a(x, u), or u(x) for x outside G.

Associated with the control u and resulting process xt is the prtial dif-
ferential operator (the differential generator)

(1.3) L f,(x, u) 0 1 0+ u)
,i Ox

For purposes of this paper, thg domain of L is the family of nonnegtive
functions with continuous second prtiM derivatives in E. Let E, be the
expectation operator given that u is the control and x0 x. Then, if
random time with E r < and V(x) is in the domain of L and has
compact support, then a formula of Dynkin,
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holds. Formula (1.4) may be loosely interpreted to mean that V(x) is the
average of the integral of its "stochastic derivative" LV(x). Note that
the integral

lc(xt u(xt) dt

will be written

t(x, u) dt.

Notes and references. For an analysis of (1.1) on the scalar (no control)
case with uniform Lipschitz conditions on f and a, see [4, pp. 277-286] or
[5, 5]. The vector case is discussed in [1, Chap. 11]. Random times, also
called Markov times, are discussed in [5, pp. 56-59] and in [1, Chap. 3,
3, and Chap. 4]. Chapter 11 of [1] discusses diffusion processes which are
stopped at random times. For diffusion processes with control u, the opera-
tot L is the differential generator. On a domain including twice continu-
ously differentiable functions with compact support, it is a restriction of
the infinitesimal operator of the process (see [1, Theorem 11.5]).

Since our analysis depends on the properties of the trajectories until the
first exit time from open sets G with compact closure, local Lipschitz con-
ditions on f, a, and u are sufficient to insure that the solutions are well
defined and continuous (w.p.1) for all less than the first exit time from G.
The process xt, with global Lipschitz conditions on u, f, and a, is
Markovian. It is also a strong Markov process ([1, Chap. 3, 3] or [5,
2]); i.e., the Markov property holds for all finite random times: for any
measurable set F in E, and finite random time ,

P[xt+. F Ix,, s <= "r] P[xt+. F lx].

For times less than the first exit time from G, the process with local Lipschitz
conditions on u, f, and is also strongly Markovian.

IfE and V(x) has continuous second derivatives and compact
support, then Dynkin’s formula ([5, p. 73] or [1, Theorems 5.1 and Corol-
lary, 5.5 and 11.5], etc.) reduces to (1.4). may have to be less than the
first exit time from some open set with compact closure, when the Lipschitz
conditions are only local (and limits taken subsequently).

The control problem. The target set is denoted by S, and its boundary
by OS. In the theorems S is assumed to be compact, but useful extensions
are possible. The control u is termed admissible if u(x) satisfies a local
Lipschitz condition. To each admissible control u’ (and corresponding



0 HAROLD J. KUSHNER

there are random time r and a cost Cu’ (x)trajectory xt withx0 x),

control u,=inf[t: xt

(.5)
’ f0"cu’ (z) E ](z’, u’) dr,

where k,(x’, u’) is nonnegative and continuous in both arguments.
An optimal control u (and corresponding time , defined by (1.5)) is

sought such that xtn. -- OS w.p.1 as -- , and

C(x) _<_ c’(x)
for other admissible controls u’ for which xtn., -- OS w.p.1 as -- o. The
exact class of admissible comparison controls is defined by Theorems
1, 2, and 3.

2. Theorems. It is convenient to prove Theorem 1 with the hypotheses
(2.2), (2.3) and (2.5). Theorem 2 gives a general and easily checkable condi-
tion for (2.2) and Theorems 2 and 3 together give a general and easily
checkable condition for (2.3) and (2.5). The results are, essentially, a proof
of the formal result that the optimal control u and cost V(x) are given by
the solution of

rain [L’V(x) -- k(x, u’)] O.

TOaEM 1. Let u be admissible, and let V (x) be a scalar valued function
with continuous second partial derivatives, nonnegative in E S, V(x) 0
]’or x OS and V(x) ---> as x -- . Let f(x, u), u(x), and z(x, u)
satisfy a local Lipschitz condition in all arguments. Let S be compact and

(2.1) LUV(x) -k(x, u) <= 0

in E S. Let xt correspond to u. Define (recall (1.2))

Q, {x’0 __< V(x) <= ml S + 0S,- inf It:xt OS},- (m) inf t: x OQ,I.

Let Xo x - Qm and, for any m

(2.2) xt(,o -- OQ

Then xt --+ OS w.p.1 as ---> . Let

(2.3) EV(x(,o)
See remark above Theorem 1, and also Theorems 2 and 3.
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Let, for an admissible control ut,
(2.4) L’V(x) >= --lc(x, u’), x E- S.

With control u’, define - and ’ (m) analogously to - and -(m). Let xt cot-

respond to u Let xtn, --> OS w.p.1 as ---> . If
(2.5) E’V(x’,(,)) ---+ O,

then, if Xo’ x,

(2.6) C(x) <= Cu’ (x),

i.e., u is optimal with respect to the class of controls satisfying (2.4) and (2.5).
Proof. Let ri(m) ]" r(m) be a sequence of random times with E (n). Since V(x) is continuous and nonnegative and V(x) -- as x-- , the set Qm is compact. Let V,(x) be a nondecreasing sequence of

functions with compact support, continuous second partial derivatives,
and equal to V (x) in Qm. In Q, OQ, L V, (x) L’V (x) k (x, u)
_-< 0. Since f, u, and satisfy a local Lipschitz condition, the process xt,
< r(m), is a continuous (w.p.1) strong Markov process, and V,(x) is in

the domain of its differential generator L. Thus, by the formula of Dynkin
(1.4) and (2.1),

ri(m)

(2.7) V,(x) EV,(x(,)) E lc(x, u) dt >= O.

Since ’i(m) -(m) and/c(x, u) >= O, the monotone convergence theorem
yields

’i (m)f ](x, u)dt f (, u)dt.
J0 a0

By hypothesis, Xtn(m) --+ Xr(.) w.p.1. Since V,(x) is continuous and has
compact support, and xtn(,) is continuous (w.p.1) in t,

V(xi()) --+ Vm(x()) w.p.1.

V,(x) is uniformly bounded. Thus, (2.8) and the dominated convergence
theorem imply

E V(x(,))

Since, by hypothesis, x() OQ, w.p.1, V,(x(,)) 0 or m w.p.1. Thus

(2.9) EuV,(x(,)) raP( sup V(xt) >= m).

Relations (2.9) and (2.7) imply

(2.10) P( sup V(xt) >= m) P( sup V(xt) >-_ m) <= V(x)/m.
(mW1)_>_t>=0
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Condition (2.10), together with the hypothesis that xm() ---> OQ w.p.1,
for arbitrary m, implies that

P(V(xta,.) -+-> 0) P( sup V(xt) > m, 11 finite m)
->_t>_0

-_< lira V(x)/m O,

nd, hence, xtn -- OS w.p.1. We hve lso proved that sup>=t>=0
w.p.1, and that xt is well defined nd continuous up to the first contact with
OS (w.p.1).
Now, by the preceding limit arguments,

(2.11) V,(x) Euv,(x,()) E? Jo (x, u) dt.

By the monotone convergence theorem, the right side goes to

E /c(x, u) dt

as m -- . Also V,(x) V (x) for fixed x nd sufficiently large m. Hence
(2.3) implies that (2.9) goes to zero as m -- . Thus,

f(2.12) V(x) -E. Jo
L’V(x) dt E lc(x, u) dt CU(x).

Now, let u’ be admissible. With the use of (2.4) nd (2.5), and rgu-
ments nulogous to those leding to (2.12), we hve (with x0 x)

E’ f0 u C’CU(x) V(x) <= tc(x, dt (x)

Thus u is optiinM relative to all u’ sutisfying the conditions of the theorem.
TnonE 2. Let tc(x, u) be continuous and positive in E S. Assume the

conditions of Theorem 1 on V(x). Then, with control u, Xta(n) OQ, w.p.1.
Proof. Let > 0 and let N be neighborhoods of oQ, with the properties"
N Q -+ 0Q as --+ 0, and k (x, u) _-> e > 0 in Q N. Since lc (x, u)
is positive und continuous in Q,, oQ,, there is such sequence N.
Note that 0 <= V (xtm()) <-_ m. Hence, the left side of (2.7) as well as its

limit is bounded by m. Thus

(m) t’ ri (m)

m
0

or ll x Q. Then, since k(x, u) >= in Q N, the average time that
xtm() spends in Q N is finite (less than m/e). Thus the time spent in
Q N is finite w.p.1. Since > 0 is arbitrary and N f] Q,-- OQ, and
xtm(,) is stochastically continuous, we hve



OPTIMALITY OF A STOCHASTIC CONTROL 505

Remark. There are weaker conditions (than /c > 0 in E S) under
which xtn,(,n) "- OQ, w.p.1, or xtn, ---> OS w.p.1. These are results in stochas-
tic stability. If/c is nonnegative, then its form together with the system
equations (1.1) may imply these facts. See, e.g., [6, Example 5], where
/c is only semidefinite.
Theorem 3 gives a criterion for condition (2.3) or (2.5). From (2.9),

we need only prove (2.13).
THEOREM 3. Let F(X) be a nonnegative, scalar valued function which is

strictly monotone increasing and has continuous second derivatives. Let
F(O) 0 and F()/ -- as -- . If LV(x) <= 0 and

LF(V(x) <= 0

in E S, then

(2.13) raP( sup V(xt) >- m) ---> 0
->_to

Proof. We have

LUF(V(x)) OF(V)L,V(x) 1 02F(V)(2.14) OV

-(x, u) 0.

Let zi(m), z(m), and r be as in Theorem 1. (We do not assume here that
xtn(m) OQm.) Then, by Dynkin’s formula (1.4),

ri (m)

(2.15) F(V,(x)) E"F(V,(x(.))) E ] (x, u) dt >__ O.

Let

sup V(xt) lim sup V(xt)] >= m q- 1.
r>_ t>_O TOO

Then r(m) < o. Also, if for some sample function, sup,>__t>_0 V(xt) >- m- 1, then there is an i such that

sup V (xt) >= m
’i (m)>_t>_O

for that sample function. Thus, by an application of the monotone con-
vergence theorem,

(2.16) limP( sup V(xt) >= m) >= P( sup V(xt) >= m - 1).
ri(m)>_tO

The strict monotonicity is not restrictive, since F(X) must be at least linear in ),.
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Also

In any case,

lira V (x.()) lim V (xtn.(,o) m.

(2.17) E’F(V(x,.r,o)) >= F(m)P( sup V(xt) >= m).
"ri(m)>_.t>_O

The fact that f(X) has a unique inverse for all X >_- 0 is used in (2.17).
Together, (2.15), (2.16), and (2.17)imply that

(2.18) F(V(x)) > F(m)P( sup V(xt) >-_ m - 1).

Multiplying both sides of (2.18) by (m - 1)IF(m) and using [(m -t- 1)/
F(m)] - 0 as m - yields the theorem.

Remark. The criterion of Theorem 3 is a simple "rate of growth" condi-
tion and is quite usable. In cases where the matrix S’} has full rank (then
L is elliptic), the condition for EV(x(,)) -- 0 reduces to a uniqueness
condition for the solution of m exterior Dirichlet problem. Our results
are valid whether or not L is elliptic.
In the sequel we use

(2.18) F(V) V log (A + V),

for some large A. Then,

(2.19)
L"F(V(x)) (log (A - V) + V ) L"V(x)V+A

(A + V) .,.
If Sj(x) is uniformly bounded and lOV/Ox [/(A -l- V) is uniformly
bounded for large A, and L"V(z) < 0 in E S, then L"F(V(x)) <= 0 and
Theorem 3 may be applied. In addition, if Sj does not depend on the
eontrol, then the u of Theorem 1 is optimal with respect to all u such that
L"’V(x) < 0 in E- S.

Remark. In practice, certain components of x may not be observed, and
it may be desired that the control be a function only of the instantaneous
values of the observed components. Let d be the dimension of x, and let
u and u’ be functions of xl, "", x, only. Now, if (assuming the other
conditions of Theorem 1 satisfied)

L’V(x) -k(x, u)

L’V(x) >__ -(x, u’)
for all x,+ xe then

C(x) <- c’ (x).
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3. A solution to a norm invariant problem. The stochastic version of the
so-called norm invariant problem considered in [3] is the following. Let
S {x’[Ix[I <= r} and

dx f(x) dt -- u dt + zI dz,

where z is a constant and I is the identity matrix and x’f(x) 0 (the
noiseless uncontrolled system is conservative). The control values are
constrained by

(3.1) uu <-
We seek the control which minimizes the average time required to transfer
x0 x to OS;/(x, u) 1. Analogs of the minimum fuel and energy prob-
lems in [3] may be analyzed similarly. That the optimal stochastic control
is identical to the optimum deterministic control is no surprise. The prob-
lem is interesting since few stochastic solutions are available and "con-
servative" systems are of some current importance.

Let u and V(x) satisfy the conditions of Theorem 1 for this problem.
Then for x > r, L"Y(x) -1, V(x) > 0, and V(x) 0 for x r.
It will be shown that the admissible control (3.2) is an optimal control.

px(3.) u

A preliminary analysis indicates that Y(x) g(]l x II) for some mono-
tonically increasing function g(h). We will first find Y(x) g(ll x II) such
that LV(x) -1, then check that V(x) satisfies the conditions of Theo-
rems 1, 2, and 3, and finally determine the family of comparison admissible
controls.

Let w x If. Since
Og(w)

we hsve, with V(x) g(w),

LUV(x) Og(W)ow

x Og(w) x

where d is the dimension of the x vector. Equation (3.3) admits of a solu-

Solutions for more general a(x, u) have not been found. In certain applications,
such as the tumbling satellite, it seems reasonable that the noise would be symmetric.

In this section x’ is the transpose of x.
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tion of the form

(3.4) g(w) Ao + AI w + A2 log w + Bi

Subsgituting (.4) into (a.a) and equaging eoeeiengs of like germs in
yields ghe A and B"

1/o,

B+ n B(d n 2) N O.
2p(n + 1)

There are only d nonzero terms in (3.5). Thus,

g(w) Ao - AI w + A2 log w- w-,
where the empty sum Bi/w 0. Since we require g(r) O, Ao is
obtained from

d--2

0 A0 +Ar -A21ogr + Bi
Since Ai -_> 0 and B =< 0, g(w) > 0 for w > r. (The negative terms in
g(w) decrease, and the positive terms increase, as w increases.)
The hypotheses of the theorems will now be verified. Define V(x)
g(]l x ]]). By construction, LV(x) -1 in E S. Also, Y(z) --as x -- , and V (x) 0 for x 0S. Hence, by Theorem 2, (2.2) is

satisfied Since L’V (x) 1 in E S and OV/Ox ]2 and S(x) O"

are uniformly bounded, Theorems 2 and 3 and the use of (2.19) imply
that (2.3) is satisfied. Let u’ u be admissible. Since u
absolutely minimizes LV(x) + 1, we have L’V(x) >= --1 -k(x, u’).
Let L’V(x) < 0 in E S. Then, as with u, (2.5) is satisfied. Then u is
optimal relative to (at least) all u such that L’V(x) < 0 in E S.
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